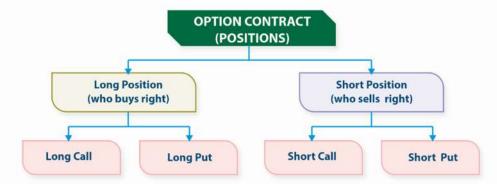


Study Session 7

LOS 1: Introduction

Definition of Option Contract:


An option contract give its owner the right, but not the legal obligation, to conduct a transaction involving an underlying asset at a pre-determined future date (the exercise date) and at a pre-determined price (the exercise price or strike price)

There are four possible options position

- Long call: The buyer of a call option \rightarrow has the right to buy an underlying asset.
- 2) Short call: The writer (seller) of a call option → has the <u>obligation to sell</u> the underlying asset.
- 3) Long put: The buyer of a put option \rightarrow has the <u>right to sell</u> the underlying asset.
- 4) Short put: The writer (seller) of a put option \rightarrow has the obligation to buy the underlying asset.

Note:

Meaning of Long position & Short position under Option Contract

Note:

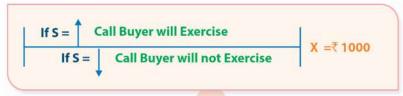
- If question is silent always assume Long Position.
- Exercise Price / Strike Price:

7.2

CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUESTIONS

The fixed price at which buyer of the option can exercise his option to buy/ sell an underlying asset. It always remain constant throughout the life of contract period.


- Option Premium:
 - To acquire these rights, owner of options must buy them by paying a price called the Option premium to the seller of the option.
 - Option Premium is paid by buyer and received by Seller.
 - Option Premium is non-refundable, non-adjustable deposit.

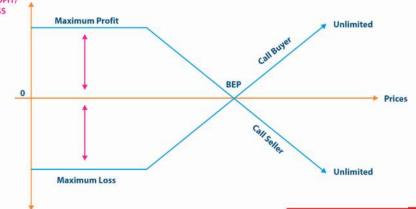
Note:

- The option holder will only exercise their right to act if it is profitable to do so.
- The owner of the Option is the one who decides whether to exercise the Option or not.

LOS 2: Call Option

When Call Option Contract are exercised:

- **♦** When CMP > Strike Price → Call Buyer Exercise the Option.
- When CMP < Strike Price → Call Buyer will not Exercise the Option.</p>

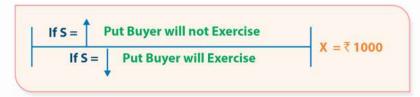


Right to Buy reliance share @ 1000 after 3	Obligation to Sell reliance share @ 1000 after 3	
months if buyer approaches to do so.		
LONG CALL	SHORT CALL	
OP Paid	OP Received	

Note:

- The call holder will exercise the option whenever the stock's price exceeds the strike price at the expiration date.
- The sum of the profits between the Buyer and Seller of the call option is always Zero. Thus, Option trading is ZERO-SUM GAME. The long profits equal to the short losses.
- Position of a Call Seller will be just opposite of the position of Call Buyer.
- In this chapter, we first see whether the Buyer of Option opt or not & then accordingly we will calculate Profit & Lossetti

PAY-OFF DIAGRAM

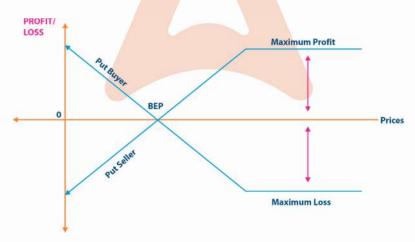


with IMPORTANT QUESTIONS

LOS 3: Put Option

When Put Option Contract are exercised:

- When CMP > Strike Price → Put Buyer will not Exercise the Option.
- When CMP < Strike Price → Put Buyer will Exercise the Option.



Right to Sell reliance share @ 1000 after 3 months	Obligation to Buy reliance share @ 1000 after 3 months if buyer approaches to do so.
LONG PUT	SHORT PUT
OP Paid	OP Received

Note:

- Put Buyer will only exercise the option when actual market price is less the exercise price.
- Profit of Put Buyer = Loss of Put Seller & vice-versa. Trading Put Option is a Zero-Sum Game.

PAY-OFF DIAGRAM

Profit or Loss/ Pay off of call Option & Put Option

While calculating profit or loss, always consider option Premium,

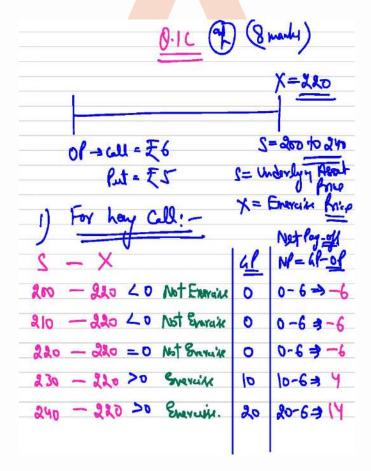
Call Buyers (Long Call)				
If S – X > 0	If S – X < 0			
Exercise the option	Not Exercise			
Net Profit = $S - X - OP$	Loss = Amount of Premium			
	Put Buyers (Long Put)			
If X – S >0	If X – S < 0			
Exercise the option	Not Exercise			
Net Profit = X – S –OP	Loss = Amount of Premium			

CA FINAL AFM SUMMARY NOTES

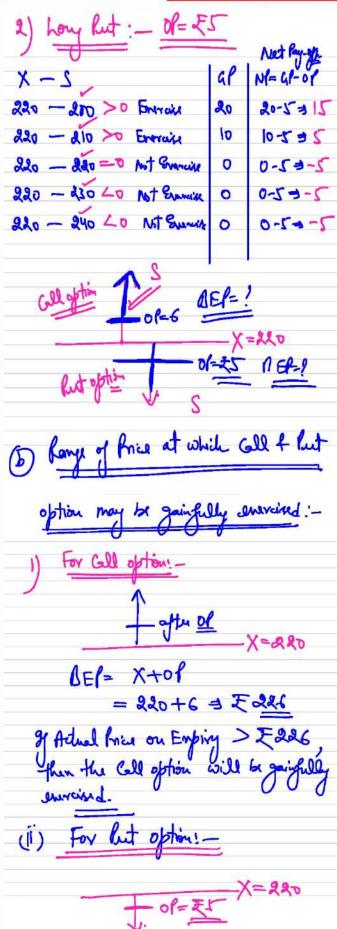
with IMPORTANT QUESTIONS

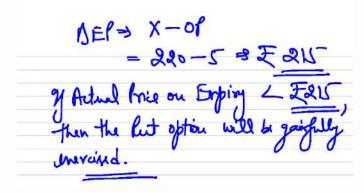
Calculation of Maximum Loss, Maximum Gain, Breakeven Point for Call & Put Option

Call Option						
Maximum Loss Maximum Gain						
Buyer (Long)	Option Premium	Unlimited				
Seller (Short)	Unlimited	Option Premium				
Breakeven	X + Option Premium					


Put Option						
	Maximum Loss Maximum Gain					
Buyer (Long)	Option Premium	X – Option Premium				
Seller (Short)	X – Option Premium	Option Premium				
Breakeven	X - Option Premium					

QUESTION NO. 1C

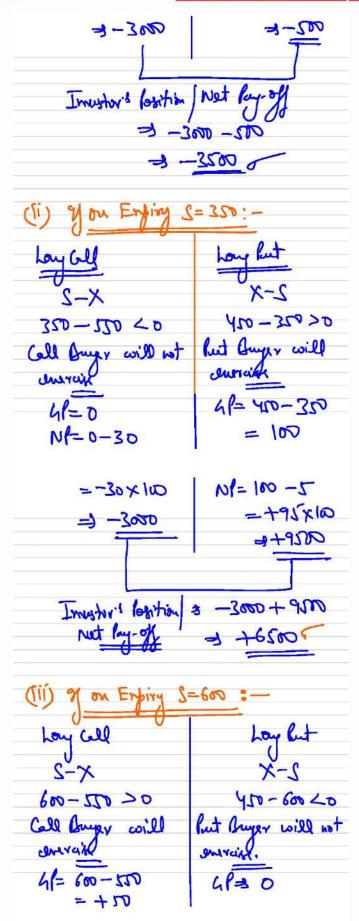

The equity share of VCC Ltd is quoted at $\stackrel{?}{_{\sim}}$ 210. A 3-month call option is available at a premium of $\stackrel{?}{_{\sim}}$ 6 per Share and a 3-month put option is available at a premium of $\stackrel{?}{_{\sim}}$ 5 per share. Ascertain the net pay offs to the option holder of a call option and a put option, given that:


- (i) The strike price in both cases is ₹ 220; and
- (ii) The share price on the Exercise day is ₹ 200, 210, 220, 230, 240.

Also indicate the price range at which the call and the put options maybe gainfully exercised.

QUESTION NO. 1G

Mr. X established the following spread on the Delta Corporation's stock


- (i) Purchased one 3-month call option with a premium of ₹ 30 and an exercise price of ₹ 550.
- (ii) Purchased one 3-month put option with a premium of \tilde{z} 5 and an exercise price of \tilde{z} 450.

Delta Corporation's stock is currently selling at ₹ 500. Determine profit or loss, if the price of Delta Corporation's:

- (i) Remains at ₹ 500 after 3 months.
- (ii) Falls at ₹ 350 after 3 months.
- (iii) Rises to ₹ 600. Assume the size option is 100 shares of Delta Corporation.

014	_
Long Call	Loughet
X= 110	X=470
0/= 30	ofs
Let si	78=100
(i) of on Enginery S=	-: 002
Long Coll	Loghet
<i>x</i> -2	2-X
20-220 00	920-500 40
Call buyer will not	Part Buyer will not
guracik	Merale
al= 0	GP=0
NF= 0-30	N= 0-5 = -5
3-30×00	a1×2- €

7.8

CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUESTIONS

LOS 4: Concept of Moneyness of an Option

Moneyness refers to whether an option is *In-the money or Out- of the money*.

Case I: If immediate exercise of the option would generate a positive pay-off, it is in the money

Case II : If immediate exercise would result in loss (negative pay-off), it is out of the money.

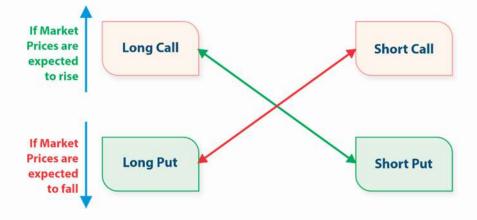
Case III : When current Asset Price = Exercise Price, exercise will generate *neither gain nor loss* and

the option is at the money.

	Call Option		Put Option
Case 1	S - X > 0	In-the-Money	X - S > 0
Case 2	S – X < 0	Out-of- the-Money	X - S < 0
Case 3	S = X	At-the-Money	X = S

Note:

Do not consider option premium while Calculating Moneyness of the Option.


LOS 5: European & American Options

American Option: American Option may be exercised at any time upto and including the contract's expiration date.

European Option: European Options can be exercised only on the contract's expiration date.

The name of the Option does not imply where the option trades – they are just names.

LOS 6: Action to be taken under Option Market

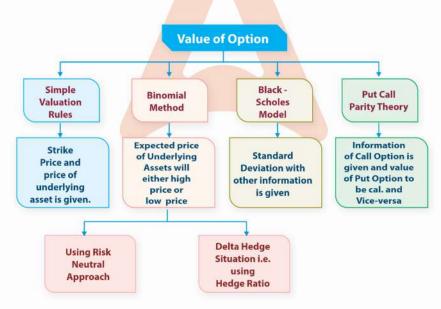
with IMPORTANT QUESTIONS

LOS 7 : Intrinsic Value & Time Value of Option

Option value (Premium) can be divided into two parts:-

- Intrinsic Value
- (ii) Time Value of an Option (Extrinsic Value)

Option Premium = Intrinsic Value + Time Value of Option


Intrinsic Value:

- An Option's intrinsic Value is the amount by which the option is In-the-money. It is the amount that the option owner would receive if the option were exercised.
- Intrinsic Value is the minimum amount charged by seller from buyer at the time of selling the right.
- An Option has ZERO Intrinsic Value if it is At-the-Money or Out-of-the-Money, regardless of whether it is a call or a Put Option.
- The Intrinsic Value of a Call Option is the greater of (S X) or 0. That is C = Max [0, S - X]
- Similarly, the Intrinsic Value of a Put Option is (X S) or 0. Whichever is greater. That is: P = Max [0, X - S]

Time Value of an Option (Extrinsic Value):

- The Time Value of an Option is the amount by which the option premium exceeds the intrinsic Value.
- 4 Time Value of Option = Option Premium – Intrinsic Value
- When an Option reaches expiration there is no "Time" remaining and the time value is ZERO.
- The longer the time to expiration, the greater the time value and, other things equal, the greater the option's Premium (price).

Option Valuation

LOS 8 : Fair Option Premium/ Fair Value/ Fair Price of a Call on Expiration

Fair Premium of Call on Exp1ry = Maximum of [(S - X), 0]

Option Premium can never be Negative. It can be Zero or greater than Zero.

LOS 9: Fair Option Premium/Fair Value/Fair Price of a Put on Expiration

Fair Premium of Put on Expiry = Maximum of [(X - S), 0]

LOS 10: Fair Option Premium/ Theoretical Option Premium/ Price of a Call before Expiry or at the time of entering into contract or As on Today

Fair Premium of Call =
$$\left[S - \frac{X}{(1+RFR)^t}, 0\right]$$
 Max Or = $\left[S - \frac{X}{e^{rt}}, 0\right]$ Max

RFR(r) = Risk-free rateT = Time to expiration

Fair Option Premium/ Theoretical Option Premium/ Price of a Put before LOS 11: Expiry or at the time of entering into contract or As on Today

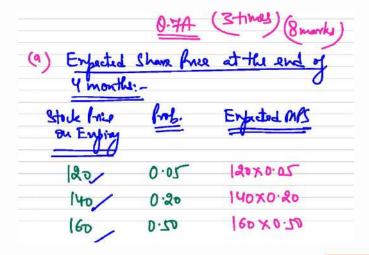
Fair Premium of Put =
$$\left[\frac{X}{(1+RFR)^T} - S, 0\right]$$
 Max Or = $\left[\frac{X}{e^{rt}} - S, 0\right]$ Max

LOS 12: Expected Value of an Option on expiry

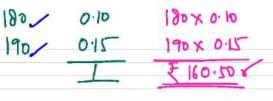
Under this approach, we will calculate the amount of Option premium on the basis of Probability.

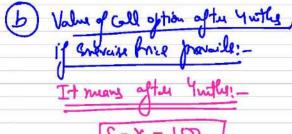
Expected value of an option at Expiry = \sum Value of Option at expiry \times Probability

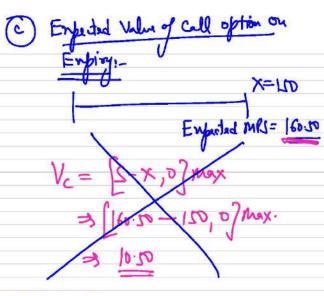
QUESTION NO. 7A

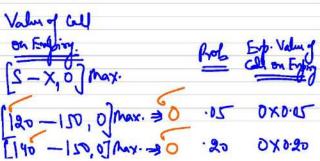

You as an investor had purchased a 4 month call option on the equity shares of X Ltd. of ₹ 10, of which the current market price is $\stackrel{?}{\sim}$ 132 and the exercise price $\stackrel{?}{\sim}$ 150. You expect the price to range between $\stackrel{?}{\sim}$ 120 to $\stackrel{?}{\sim}$ 190.

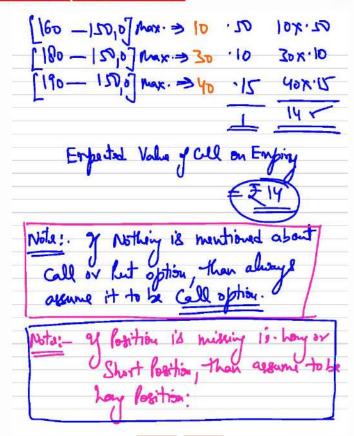
The expected share price of X Ltd. and related probability is given below:

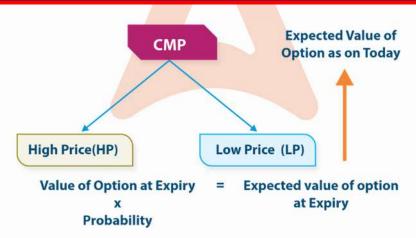

Expected Price (₹)	120	14	40	160	180	190
Probability	.05	.2	20	.50	.10	.15


Compute the following:


- a) Expected Share price at the end of 4 months.
- b) Value of Call Option at the end of 4 months, if the exercise price prevails.
- c) In case the option is held to its maturity, what will be the expected value of the call option?







7.12

Derivatives Analysis & Valuation (Options

LOS 13: Risk Neutral Approach for Call & Put Option(Binomial Model)

- Under this approach, we will calculate Fair Option Premium of Call & Put as on Today.
- The basic assumption of this model is that share price on expiry may be higher or may be lower than current price.

Step 1: Calculate Value of Call or Put as on expiry at high price & low price

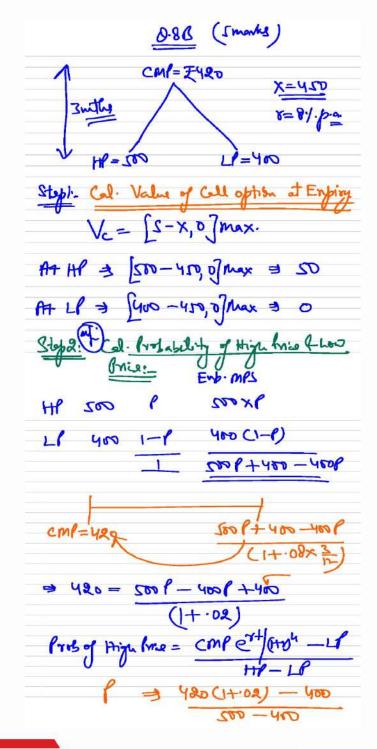
Value of Call as on expiry = Max[(S - X), 0]

Value of Put as on expiry = Max[(X - S), 0]

Step 2: Calculate Probability of High Price & Low Price

Probability of High Price =
$$\frac{\text{CMP } (1+r)^n - LP}{\text{HP} - \text{LP}}$$
 or Probability of High Price = $\frac{\text{CMP } (e^{\text{rt}}) - \text{LP}}{\text{HP} - \text{LP}}$

Step 3: Calculate expected Value/ Premium as on expiry by using Probability

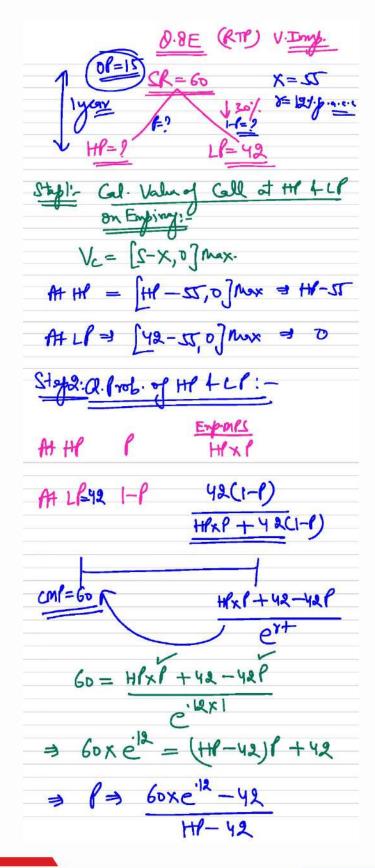

Step 4: Calculate Premium as on Today

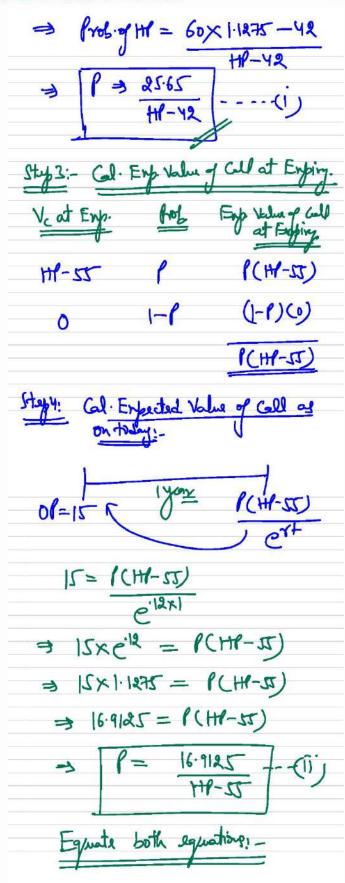
By Using normal Compounding = $\frac{\text{Expected Premium as on expiry}}{\text{Expected Premium as on expiry}}$ (1+r)^t

By Using Continuous Compounding = $\frac{\text{Expected Premium as on expiry}}{\text{Expected Premium as on expiry}}$

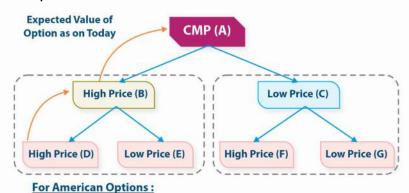
QUESTION NO. 8B

The current market price of an equity share of Penchant Ltd is ₹ 420. Within a period of 3 months, the maximum and minimum price of it is expected to be ₹ 500 and ₹ 400 respectively. If the risk free rate of interest be 8% p.a., what should be the value of a 3 months Call option under the "Risk Neutral" method at the strike rate of ₹ 450?




428.40 -400 0.2840 Vc on Enjoy OMB.XO 0.8840 AA HY OX. THO 07160 ALL 0 14.20 14:20 Fol= 13.92

QUESTION NO. 8E

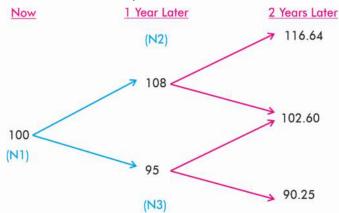

Spot Price is ₹ 60. A One year European Call Option is being quoted in the market at option premium of ₹ 15 with Exercise Price of ₹ 55. Risk Free Rate of return is 12% p.a.c.c. The stock can either rise or fall after a year. If it can fall by 30% by what percentage (%) can it rise?

LOS 14: Two Period Binomial Model

We divide the option period into two equal parts and we are provided with binomial projections for each path. We then calculate value of the option on maturity. We then apply backward induction technique to compute the value of option at each nodes.

Max (Intrinsic Value, Calculated Value)

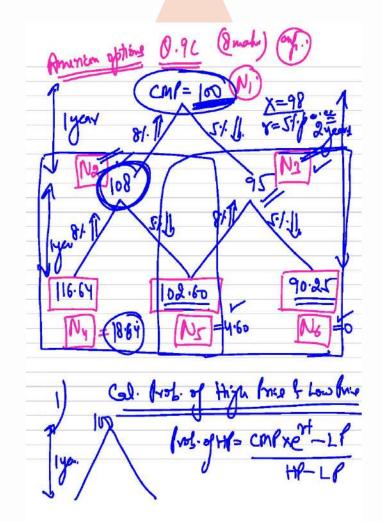
7.18


CA FINAL AFM SUMMARY NOTES

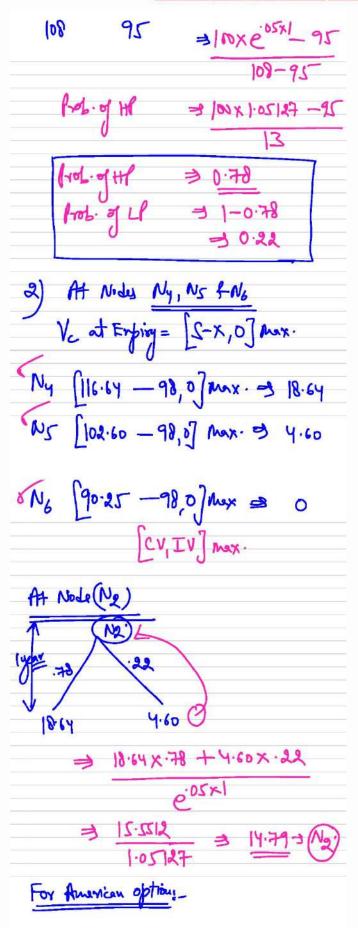
with IMPORTANT QUESTIONS

QUESTION NO. 9C

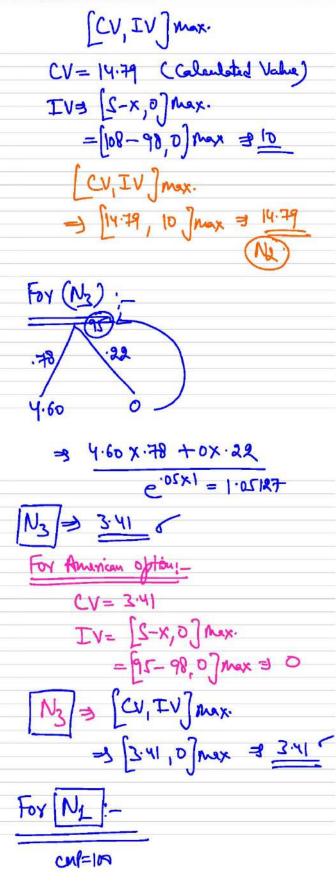
A two year tree for a share of stock in ABC Ltd., is as follows:

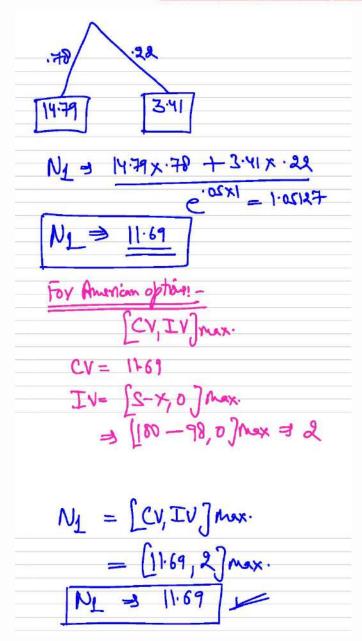


Consider a two years American call option on the stock of ABC Ltd., with a strike price of $\stackrel{?}{_{\sim}}$ 98. The current price of the stock is $\stackrel{?}{_{\sim}}$ 100. Risk free return is 5 per cent per annum with a continuous compounding and $e^{0.05}$ = 1.05127.


Assume two time periods of one year each.

Using the Binomial Model, calculate:


- (i) The probability of price moving up and down;
- (ii) Expected pay offs at each nodes i.e. N1, N2 and N3 (round off upto 2 decimal points).



MIMPORTANT QUESTIONS

LOS 15: Put Call Parity Theory (PCPT)

Put Call Parity is based on Pay-offs of two portfolio combination, a fiduciary call and a protective put.

Fiduciary Call

A Fiduciary Call is a combination of a pure-discount, riskless bond that pays X at maturity and a Call. **Protective Put**

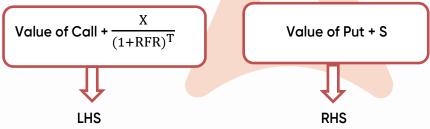
A Protective Put is a share of stock together with a put option on the stock.

PCPT
$$\rightarrow$$
 Value of Call + $\frac{X}{(1+RFR)^T}$ = Value of Put + S

CA FINAL AFM SUMMARY NOTES

Protective Put					
If on Maturity S > X			If on Maturity S < X		
Put option is lapse i.e. pay off	=	NIL	Put option is exercise i.e. pay off	=	X - S
Stock is sold in the Market	=	S	Stock is sold in the Market	=	S
		S			X

Fiduciary Call						
If on Maturity S > X			If on Maturity S < X	_		
Call option is exercise i.e. pay off	=	S – X	Call option is lapse i.e. pay off	=	NIL	
Bond is sold in the Market	=	Х	Bond is sold in the Market	=	Х	
		S			Х	


Through this theory, we can calculate either Value of Call or Value of Put provided other Three information is given.

Assumptions:

- Exercise Price of both Call & Put Option are same.
- Maturity Period of both Call & Put are Same.

LOS 16 : Put - Call Parity Theory → ARBITRAGE

As per PCPT,

Case I: If LHS = RHS, arbitrage is not possible.

<u>Case II:</u> If LHS ≠ RHS, arbitrage is possible.

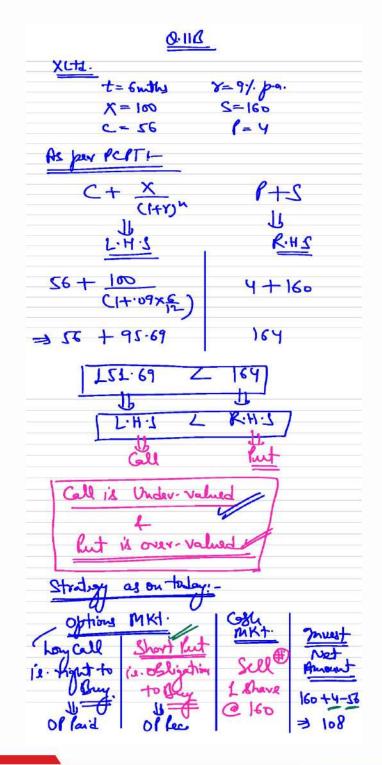
A. If LHS > RHS, Call is Over-Valued & Put is Under-Valued

Opti	on Market	Cash Market	Net Amount
Short Call	Long Put	Buy	Borrow
i.e. Obligation to sell & i.e. Right to sell & Option		i.e. Buy one share	S + P - C
Option Premium	Premium Paid		
Received			

B. If LHS < RHS, Call is Under-Valued & Put is Over-Valued

Opti	on Market	Cash Market	Net Amount
Long Call	Short Put	Sell	Invest
i.e. Right to Buy & i.e. Obligation to buy &		i.e. Sell one share	S + P - C
Option Premium Paid	Option Premium Received		

with IMPORTANT QUESTIONS

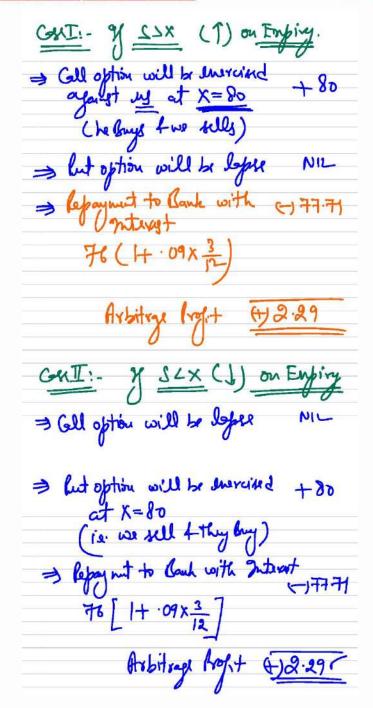


QUESTION NO. 11B

The following table provides the prices of options on equity shares of X Ltd. and Y Ltd.

The risk free interest is 9%. You as a financial planner are required to spot any mispricing in the quotations of option premium and stock prices. Suppose, if you find any such mispricing then how you can take advantage of this pricing position.

Share	Time to exercise	Exercise price (₹)	Share price (₹)	Call Price (₹)	Put price (₹)
X Ltd.	6 Months	100	160	56	4
Y Ltd.	3 Months	80	100	26	2



EKAGRATA

- Hall P Halled Hall

X=100 X=100 Jon 6 miths
Arbitrage Profit [on Enginy]
Delivery aged Settlement
CNI: of SIX (1) on Engling:
=> Call option will be hereine _100 f buy share at X=100
> But oftion will be lopee NIL > Received from Bunk with +112.86
> hereized from Bank with +112.86
Arbitrge Agi+ 4)12.86
CMI: of SLX ie. (1) on Enging:
=> Cell option will be lopee MIL
against my at X=100 (he selly five buy)
> Received from Cank with + 112.86
108 (1+·09x 6)
Arbitige light (+) 12.86

			Val- All III		
†!		W	th IMPOR	TANT Q	
AF					
	t= 3,	uth	X=90		
	Y= 97	1. p.a.	col = 2		
	C = 2		P=2		
As	er Ich	<u>'!-</u>	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	C+	(+x)n	<i>(</i> -	2+	
S	$\frac{16+\frac{8}{C1}}{C1}$	+·09×3	2 -	F100	
2	4十分	1.24	102		
Y .	[It	7.24	> 102		
ſ	e. L.1	1.5 >	RHJ		
100000		ver-valued	1		
	Pert is	Under-Val	uld		
Strat	igy as	on today! -			
Short	all of	الما يموا	Goth MX+	Lowos	
	المراجع	is right	Buy.	Aut.	
	Zell	400	Latera	100+2	
		7500	1 =	-2.6	
	offer offer @ 100 76				
Q16 g					
X=80					
Call of Arbitrage Profit: - [on Empiry]					
Page 1917	is gith Zmile				
2	Delivary Sand Settlement				
<i>لا</i> =	WVXY	Jaka Sci	Name of the second		

LOS 17: Option Strategies

Combination of Call & Put is known as OPTION STRATEGIES.

Types of Option Strategies:

Some important Option Strategies are as follows:

- **Straddle Position**
- 2. Strangle Strategy
- 3. Strip Strategy
- 4. Strap Strategy
- 5. Butterfly Spread

CA FINAL AFM SUMMARY NOTES

Straddle Position:

Straddle may be of 2 types:

Long Straddle	Short Straddle
Buy a Call and Buy a Put on the same stock with both the options having the same exercise price.	Sell a Call and Sell a Put with same exercise price and same exercise date.
Option: Buy One Call and Buy One Put	Option: Sell One Call and Sell One Put
Exercise Date: Same of Both	Exercise Date: Same of Both
Strike Price / Exercise Price: Same of Both	Strike Price / Exercise Price: Same of Both
Note:	Note:
A Long Straddle investor pays premium on both	A Short Straddle investor receive premium on both
Call & Put.	Call and Put.

Note:

- When an investor is not sure whether the price will go up or go down, then in such case we should create a straddle position.
- If Question is Silent, always assume Long Straddle.

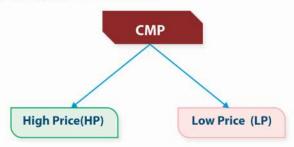
2. Strangle Strategy:

- An option strategy, where the investor holds a position in both a call and a put with different strike prices but with the same maturity and underlying asset is called Strangles Strategy.
- -Selling a call option and a put option is called seller of strangle (i.e. Short Strangle).
- Buying a call and a put is called Buyer of Strangle (i.e. Long Strangle).
- If there is a large price movement in the near future but unsure of which way the price movement will be, this is a Good Strategy.

3. S	trip Strategy (Bear Strategy)	4. Strap Strategy (Bull Strategy)			
4	Buy Two Put and Buy One Call Option of the same stock at the same exercise price and for the same period.	#	Buy Two Calls and Buy One Put when the buyer feels that the stock is more likely to rise Steeply than to fall.		
Strip Position is applicable when decrease in price is more likely than increase.		#	Strap Position is applicable when increase in price is more likely than decrease.		
Option: Buy Two Put and Buy One Call		Option: Buy Two Calls and Buy One Put			
Exercise Date: Same of Both			Exercise Date: Same of Both		
Strike Price/ Exercise Price: Same of Both			Strike Price/ Exercise Price: Same of Both		

5. Butterfly Spread:

In Butterfly spread position, an investor will undertake 4 call option with respect to 3 different strike price or exercise price.


It can be constructed in following manner:

- Buy One Call Option at High exercise Price (S1)
- Buy One Call Option at Low exercise Price (S2)
- Sell two Call Option $\left(\frac{S_1 + S_2}{2}\right)$

LOS 18 : Binomial Model (Delta Hedging / Perfectly Hedged technique) for Call Writer

Under this concept, we will calculate option premium for call option.

It is assumed that expected price on expiry may be greater than Current Market Price or less than Current Market Price.

Steps involved:

Derivatives Analysis & Valuation (Options

Step 1: Compute the Option Value on Expiry Date at high price and at low price Value of Call as on expiry = Max[(S - X), 0]

Step 2: Buy 'Delta' No. of shares '\Delta' at Current Market Price as on Today. Delta '\Delta' also known as Hedge Ratio.

> Change in Option Premium Hedge Ratio or $^{\prime}\Delta^{\prime}$ Change in Price of Underlying Asset Value of call on expiry at High Price -Value of call on expiry at Low Price High Price -Low Price

Step 3: Construct a Delta Hedge Portfolio i.e. Risk-less portfolio / Perfectly Hedge Portfolio Sell one call option i.e. Short Call ,Buy Delta no. of shares and borrow net amount.

Borrow the net Amount required for the above steps

$$B = \frac{1}{1+r} \left[\Delta \times HP - V_C \right]$$
Or
$$B = \frac{1}{1+r} \left[\Delta \times LP - V_C \right]$$

Where r = rate of interest adjusted for period

Step 5: Calculate Value of call as on today

Borrowed Amount = Amount required to purchase of share - Option Premium Received

$$B = \Delta \times CMP - OP$$
 Or
$$Option \ Premium = \Delta \times CMP - Borrowed \ Amount)$$

Note: Calculation of Cash flow Position/ Value of holding after 1 year

If on Maturity Actual Market Price is HP

Cash Flow = $[\times HP - V_C]$

If on Maturity Actual Market Price is S₂

Cash Flow = $1 \times LP - V_C$

Cash Flow at HP and LP will always be same.

CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUESTIONS

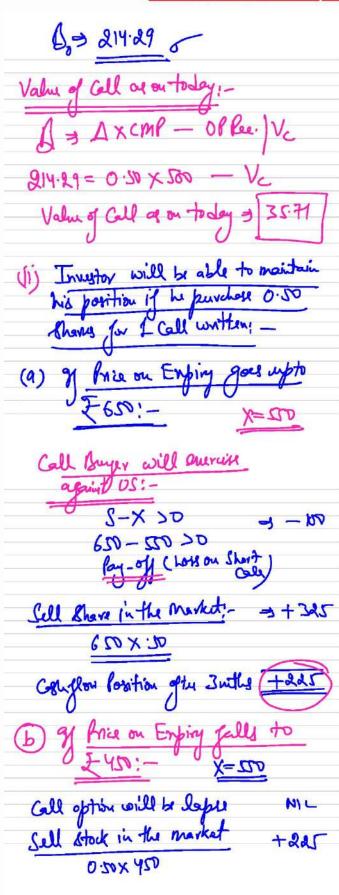
Meaning of perfectly hedge position under binomial model

Perfectly hedge position means Profit or Loss will be Zero or NIL. It can be achieved by buying Δ shares, sell one call option and borrowing the required amount.

Delta is the number of shares which makes the portfolio perfectly hedged i.e. whether the stock price on maturity goes up or decline, the value of portfolio doesn't vary i.e. our profit and loss position will be Zero.

QUESTION NO. 13D

AB Ltd.'s equity shares are presently selling at a price of $\stackrel{?}{_{\sim}}$ 500 each. An investor is interested in purchasing AB Ltd.'s shares. The investor expects that there is a 70% chance that the price will go up to $\stackrel{?}{_{\sim}}$ 650 or a 30% chance that it will go down to $\stackrel{?}{_{\sim}}$ 450, three months from now. There is a call option on the shares of the firm that can be exercised only at the end of three months at an exercise price of $\stackrel{?}{_{\sim}}$ 550.


Calculate the following:

- (i) If the investor wants a perfect hedge, what combination of the share and option should he select?
- (ii) Explain how the investor will be able to maintain identical position regardless of the share price.
- (iii) If the risk-free rate of return is 5% for the three months period, what is the value of the option at the beginning of the period?
- (iv) What is the expected return on the option?

Cal. Delta Hedge Patro: -D= VeatH-Veatel == 10-0 = 100 == 100 == 100 V = 0.00 Inustry should sell one Gel 4 any 0:50 shaves for perfect hedging No. of Shear Short Call B-AXCOR - OF ReefVe W.No.d: - Cal. of Corvered Amount as AT HP= = AXHP-VL = . 20 x 62 - 100 = 225 ATLIBE - AXLI-VE 0-02PX01.0= Dorversed Ant as on today: 225 (14.05)

Colly flow Cosition gets I willy -225 (11) Value of Cell at the legining of The period = 2 35.71 Ch. No.2) 135 JE 100x. 40 100 AT HP At Ll 04.30 D

LOS 19: Black & Scholes Model

The BSM Model uses five variables to value a call option:

- 1. The price of the Underlying Stock (S)
- 2. The exercise price of the option (X)
- 3. The time remaining to the expiration of the option (t)

with IMPORTANT QUESTIO

- 4. The riskless rate of return (r)
- 5. The volatility of the underlying stock price (σ)

<u>Assumptions of BSM Model:</u>

- The price of underlying asset follows a log normal distribution
- Markets are frictionless. There is no taxes, no transaction cost, no restriction on short sale.
- The option valued are European options.
- Risk Free continuous compounding interest rate is known and constant.
- Annualized volatility of the stock is known and constant.
- The underlying asset has no cash flow as dividend, coupons etc.

For Call:

Value of a Call Option/ Premium on Call =
$$S \times N(d_1) - \frac{X}{e^{rt}} \times N(d_2)$$

Calculation of d₁ and d₂

$$d_1 = \frac{l_n \left[\frac{S}{X} \right] + \left[r + 0.50\sigma^2 \right] \times t}{\sigma \times \sqrt{t}}$$

$$d_2 = d1 - \sigma \sqrt{t}$$
Or
$$d_2 = \frac{l_n \left[\frac{S}{X}\right] + \left[r - 0.50\sigma^2\right] \times t}{\sigma \times \sqrt{t}}$$

where

S = Current Market Price

X = Exercise Price

r = risk-free interest rate

t = time until option expiration

 σ = Standard Deviation of Continuously Compounded annual return

For Put:

Value of a Put Option/ Premium on Put =
$$\frac{x}{e^{rt}} \times [1 - N(d_2)] - S \times [1 - N(d_1)]$$

Calculation of $N(d_1) \& N(d_2)$

 $N(d_1)$ and $N(d_2)$ can be calculated by using 2 steps:

- 1. Calculate the value of d_1 and d_2
- 2. Calculate $N(d_1)$ and $N(d_2)$ by using

Method 1: $N(d_1)$ and $N(d_2)$ table

Method 2: Z- table or Normal Distribution Curve

Method 1:

Example 1:	Example 2:
$d_1 = 0.70$, $d_2 = 0.50$	$d_1 = -1.31$, $d_2 = -1.49$
$N(d_1) = N(0.70) = 0.758036$	$N(d_1) = N(-1.31) = 0.095098$
$N(d_2) = N(0.50) = 0.691462$	$N(d_2) = N(-1.49) = 0.068112$

Example 3:

d1 = 0.4539

0.45 = 0.673645

0.46 = 0.677242

7.34

CA FINAL AFM SUMMARY NOTES

When d1 increases by 0.01, the value increases by 0.003597

When d1 increases by 1, the value increases by $\frac{0.003597}{0.003597}$

When d1 increases by 0.0039, the value increases by $\frac{0.003597}{.01} \times 0.0039 = 0.00140283$

 $N(d_1) = N(0.4539)$

= 0.673645 + 0.00140283

= 0.675047

Method 2: Using Normal Distribution Table or Z-Table

Example1:	Example2:		
d1 = 0.70 , d2 = 0.50	d1 = - 1.31 , d2 = - 1.49		
d1 = 0.70	d1 = - 1.31		
Z-value of 0.70 (Through table) = 0.258036 N(d1) = N(0.70) = 0.50 + 0.258036	Z-value of 1.31 (Through table) = 0.404902 N(d1) = N(- 1.31) = 0.50 - 0.404902 = 0.095098		
= 0.758036 Z-value of 0.50 = 0.191462	= 0.095098 d2 = - 1.49		
	, v.=		
N(d2) = N(0.50) = 0.50 + 0.191462	Z-value of 1.49 (Through table) = 0.431888		
= 0.691462	N(d2) = N(-1.49) = 0.50 - 0.431888		
	= 0.068112		

Calculation of Natural log (In)

Example1:	Example2:	
0.75	1.24	
Natural log (0.75)	In (1.24) = 0.21511	
In (0.75) = -0.28768		

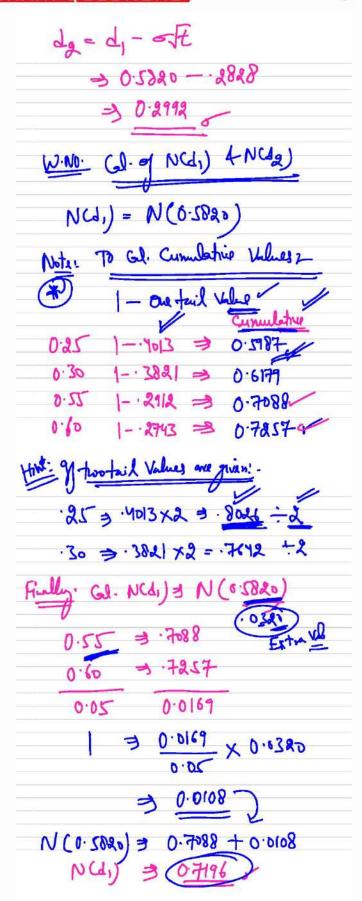
QUESTION NO. 14B

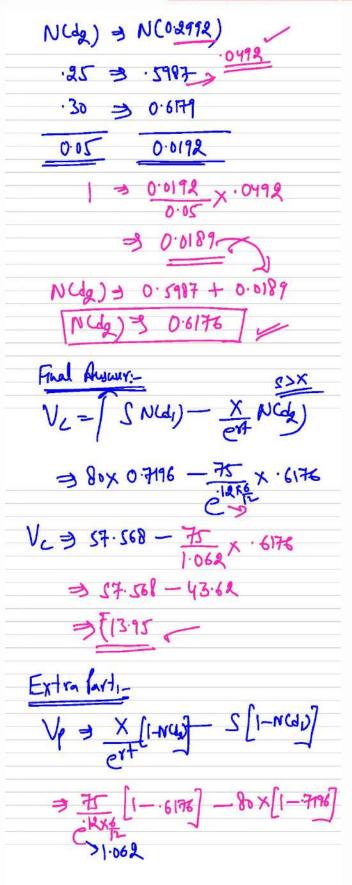
From the following data for certain stock, find the value of a call option:

<u> </u>		
Price of stock now	=	₹ 80
Exercise price	=	₹ 75
Standard deviation of continuously compounded annual return	=	0.40
Maturity period	=	6 months
Annual interest rate	=	12%

Given

Number of S.D. from Mean, (z)	Area of the left or right (one tail)	
0.25	0.4013	
0.30	0.3821	
0.55	0.2912	
0.60	0.2743	
e ^{0.12x0.5} = 1.062		
In 1.0667 = 0.0646		





Solution:

0.14B (RTP) V.V.Ing. S= 80 X=75 == 0.40 8=121 parce to 6 miles Solly Value of Call aption at on today => SNUI) - XNUE) q= gr [x] + [x+.20 = 1)+ dg = d1 - 5/2 M.VO.1 Col. of d, 4 d2 q= 3/2 = 1/2 | 1/2 | 1/2 = 1/2 3 Ju[80] + [.12+:10 X.40]/6 .401至 ⇒ In[1.0667] +[0.12+088].51 40×07071 0.2888 > 3 0.2850 d,= 0:5120

LOS 20 : BSM \rightarrow when dividend amount is given in the question

Adjust Spot Price (S) or CMP as [Spot Price - PV of Dividend Income]

Value of a Call Option =
$$[S - PV \text{ of Dividend Income}] \times N(d_1) - \frac{X}{e^{rt}} \times N(d_2)$$

$$d_1 = \frac{l_n \left[\frac{S - PV \text{ of Dividend Income}}{X} \right] + \left[r + 0.50\sigma^2 \right] \times t}{\sigma \times \sqrt{t}}$$

$$d_2 = d_1 - \sigma \sqrt{t}$$

LOS 21: Put-Call Ratio

Put- Call Ratio =
$$\frac{\text{Volume of Put Traded}}{\text{Volume of Call Traded}}$$

The ratio of the volume of put options traded to the volume of Call options traded, which is used as an indicator of investor's sentiment (bullish or bearish)

The put-call Ratio to determine the market sentiments, with high ratio indicating a bearish sentiment and a low ratio indicating a bullish sentiment.

LOS 22: Option Greek Parameters

Option price depends on 5 factors:

Option Price = $f[S, X, t, r, \sigma]$, out of these factors X is constant and other causing a change in the price of option.

constant.

CA FINAL AFM SUMMARY NOTES

We will find out a rate of change of option price with respect to each factor at a time, keeping others

- 1. Delta: It is the degree to which an option price will move given a small change in the underlying stock price. For example, an option with a delta of 0.5 will move half a rupee for every full rupee movement in the underlying stock.
 - The delta is often called the hedge ratio i.e. if you have a portfolio short 'n' options (e.g. you have written n calls) then n multiplied by the delta gives you the number of shares (i.e. units of the underlying) you would need to create a riskless position - i.e. a portfolio which would be worth the same whether the stock price rose by a very small amount or fell by a very small amount.
- 2. Gamma: It measures how fast the delta changes for small changes in the underlying stock price i.e. the delta of the delta. If you are hedging a portfolio using the delta-hedge technique described under "Delta", then you will want to keep gamma as small as possible, the smaller it is the less often you will have to adjust the hedge to maintain a delta neutral position. If gamma is too large, a small change in stock price could wreck your hedge. Adjusting gamma, however, can be tricky and is generally done using options.
- 3. Vega: Sensitivity of option value to change in volatility. Vega indicates an absolute change in option value for a one percentage change in volatility.
- 4. Rho: The change in option price given a one percentage point change in the risk-free interest rate. It is sensitivity of option value to change in interest rate. Rho indicates the absolute change in option value for a one percent change in the interest rate.
- 5. Theta: It is a rate change of option value with respect to the passage of time, other things remaining constant. It is generally negative.

CA FINAL AFM SUMMARY NOTES

EKAGRATA

40	with IMPORTANT QUEST	TIONS	न भूतो न भविष्यति !
		Notes	
