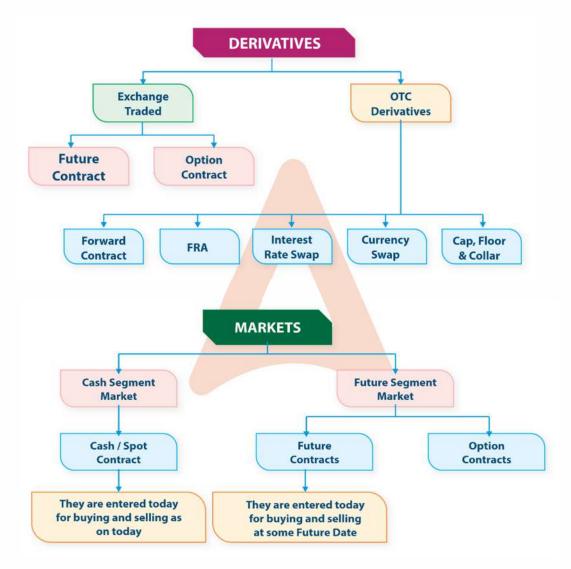


CA FINAL - AFM SCHEDULE

YT RE				NAGEMENT) By CA Gaurav Jain 2025 - STUDY PLAN YT - EACH LEC I	S 1.5 HRS
Date	Day	Time	Duration	Topics	Mode
4-Feb-25	Tuesday	6:00-7:00 PM	1	REVISION SCHEDULE	YT LIVE
5-Feb-25	Wednesday	7:00-8:30 PM	1.5	DERIVATIVES-FUTURES	YT LIVE
6-Feb-25	Thursday	7:00-8:30 PM	1.5	DERIVATIVES-FUTURES	YT LIVE
7-Feb-25	Friday	7:00-8:30 PM	1.5	DERIVATIVES-FUTURES	YT LIVE
8-Feb-25	Saturday	7:00-8:30 PM	1,5	DERIVATIVES-OPTIONS	YT LIVE
0-Feb-25	Monday	7:00-8:30 PM	1.5	DERIVATIVES-OPTIONS	YT LIVE
1-Feb-25	Tuesday	7:00-8:30 PM	1.5	DERIVATIVES-OPTIONS	YT LIVE
2-Feb-25	Wednesday	7:00-8:30 PM	1.5	FOREX	YT LIVE
3-Feb-25	Thursday	7:00-8:30 PM	1.5	FOREX	YT LIVE
4-Feb-25	Friday	7:00-8:30 PM	1.5	FOREX	YT LIVE
5-Feb-25	Saturday	7:00-8:30 PM	1.5	FOREX	YT LIVE
7-Feb-25	Monday	7:00-8:30 PM	1.5	FOREX	YT LIVE
8-Feb-25	Tuesday	7:00-8:30 PM	1.5	IRRM	YT LIVE
9-Feb-25	Wednesday	7:00-8:30 PM	1.5	IRRM	YT LIVE
0-Feb-25	Thursday	7:00-8:30 PM	1.5	PORTFOLIO MANAGEMENT	YT LIVE
1-Feb-25	Friday	7:00-8:30 PM	1.5	PORTFOLIO MANAGEMENT	YT LIVE
2-Feb-25	Saturday	7:00-8:30 PM	1.5	PORTFOLIO MANAGEMENT	YT LIVE
4-Feb-25	Monday	7:00-8:30 PM	1.5	PORTFOLIO MANAGEMENT	YT LIVE
5-Feb-25	Tuesday	7:00-8:30 PM	1.5	SECURITY VALUATION	YT LIVE
6-Feb-25	Wednesday	7:00-8:30 PM	1.5	SECURITY VALUATION	YT LIVE
7-Feb-25	Thursday	7:00-8:30 PM	1.5	CORPORATE VALUATION	YT LIVE
8-Feb-25	Friday	7:00-8:30 PM	1.5	CORPORATE VALUATION	YT LIVE
1-Mar-25	Saturday	7:00-8:30 PM	1.5	CORPORATE VALUATION	ZOOM
3-Mar-25	Monday	7:00-8:30 PM	1.5	MERGER & ACQUISITION	YT LIVE
4-Mar-25	Tuesday	7:00-8:30 PM	1.5	MERGER & ACQUISITION	YT LIVE
5-Mar-25	Wednesday	7:00-8:30 PM	1.5	MERGER & ACQUISITION	YT LIVE
6-Mar-25	Thursday	7:00-8:30 PM	1.5	MUTUAL FUNDS	YT LIVE
7-Mar-25	Friday	7:00-8:30 PM	1.5	MUTUAL FUNDS	YT LIVE
8-Mar-25	Saturday	7:00-8:30 PM	1.5	TEST	ZOOM
O-Mar-25	Monday	7:00-8:30 PM	1.5	BOND VALUATION	YT LIVE
1-Mar-25	Tuesday	7:00-8:30 PM	1.5	BOND VALUATION	YT LIVE
2-Mar-25	Wednesday	7:00-8:30 PM	1.5	IFM	YT LIVE
5-Mar-25	Saturday	7:00-8:30 PM	HOLI 1.5	IFM	YT LIVE
7-Mar-25	Monday	7:00-8:30 PM	1.5	ACB	YT LIVE
8-Mar-25	Tuesday	7:00-8:30 PM	1.5	ACB	YT LIVE
9-Mar-25	Wednesday	7:00-8:30 PM	1.5	ACB	YT LIVE
0-Mar-25	Thursday	7:00-8:30 PM	1.5	MISCELLANEOUS TOPICS	YT LIVE
1-Mar-25	Friday	7:00-8:30 PM	1.5	RISK MANAGEMENT	YT LIVE
2-Mar-25	Saturday	7:00-8:30 PM	1.5	THEORY	YT LIVE
4-Mar-25	Monday	7:00-8:30 PM	1.5	TEST	ZOOM
4-Mar-25 5-Mar-25	Tuesday	7:00-8:30 PM	1.5	TEST	ZOOM
J-Widi-Z3	ruesuay	7.00-8.30 FIVI	1.5	1231	ZUUIVI

Only on YouTube Channel: Ekagrata CA Final By Adda247



Study Session 6

LOS1: Introduction

Why there is a need of Derivatives market?

Difference between Cash Market & Derivatives.

Define Forward Contract, Future Contract.

- Forward Contract, In Forward Contract one party agrees to buy, and the counterparty to sell, a physical asset or a security at a specific price on a specific date in the future. If the future price of the assets increases, the buyer (at the older, lower price) has a gain, and the seller a loss.
- Futures Contract is a standardized and exchange-traded. The main difference with forwards are that futures are traded in an active secondary market, are regulated, backed by the clearing house and require a daily settlement of gains and losses.

CA FINAL AFM SUMMARY NOTES

Future Contracts differ from Forward Contracts in the following ways:

- atare contracts arrest from a contract of the	<u> </u>				
Future Contracts	Forward Contracts				
Organized Exchange	Private Contracts				
Highly Standardized	Customized Contracts				
♣ Lot size requirement					
Expiry Date					
♣ MTM					
No Counterparty default risk	Counterparty default risk exists				
Government Regulated	Usually not Regulated				

LOS 2: Position to be taken under Future Market

LOS 3: How Future Contract can be terminated at or prior to expiration?



CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUESTIONS

How to settle / square-off / covering / closing out a position to calculate Profit / Loss (Cash-Settlement)

Gain or Loss under Future Market

Position	If Price on Maturity/ Settlement Price	Gain/ Loss
Lang Desition	Increase	Gain
Long Position	Decrease	Loss
Chart Desition	Increase	Loss
Short Position	Decrease	Gain

Delivery Based Settlement:-

How future contract can be cancelled through Delivery?

A short can terminate the contract by delivering the goods, and a long can terminate the Contract by accepting delivery and paying the contract price to the short. This is called Delivery. The location for delivery (for physical assets), terms of delivery, and details of exactly what is to be delivered are all specified in the contract.

Note:

- Gain/Loss is net of brokerage charge. Brokerage is paid on both buying & selling. 4
- Security Deposit is not considered while calculating Profit & Loss A/c.
- Interest paid on borrowed amount must be deducted while calculating Profit & Loss.
- A Future contract is ZERO-SUM Game. Profit of one party is the loss of other party.

LOS 4: Difference between Margin in the cash market and Margin in the future markets and Explain the role of initial margin, maintenance margin

In Cash Market, margin on a stock or bond purchase is 100% of the market value of the asset.

- Initially, 50% of the stock purchase amount may be borrowed and the remaining amount must be paid in cash (Initial margin).
- There is interest charged on the borrowed amount.

In Future Markets, margin is a performance guarantee i.e. security provided by the client to the exchange. It is money deposited by both the long and the short. There is no loan involved and consequently, no interest charges.

The exchange requires traders to post margin and settle their account on a daily basis.

Initial Margin

Money deposited in a futures account before any trading takes place and paid by both Long & Short position

Maintenance Margin

Amount of margin that must be maintained. If the margin balance falls below the MM due to the change in the Contract Price, additional fund must be deposited to bring the margin balance back-up to the initial margin requirement.

Variation Margin

Amount which the trader has to bring when maintenance margin is breached.

6.4

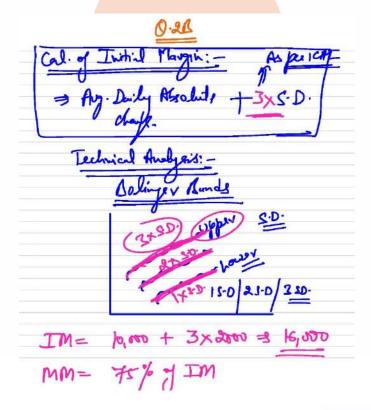
CA FINAL AFM SUMMARY NOTES

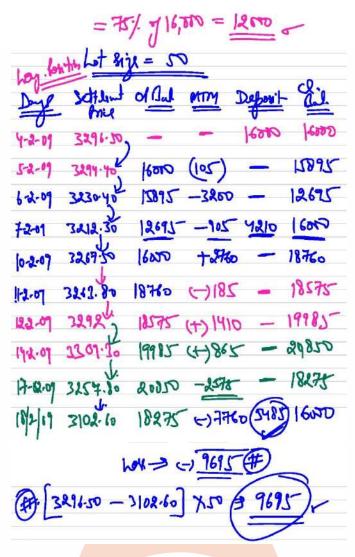
WILL IMPURIANT QUESTIONS

Note:

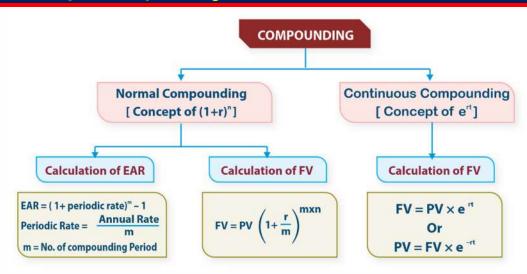
- 4 Any amount, over & above initial margin amount can be withdrawn.
- Calculation of Initial Margin if Standard Deviation is given:

Initial Margin = Daily Absolute Change + 3 Standard Deviation


QUESTION NO. 2B


Sensex futures are traded at a multiple of 50. Consider the following quotations of Sensex futures in the 10 trading days during February, 2009:

Day's	High	Low	Closing
4-2-09	3306.40	3290.00	3296.50
5-2-09	3298.00	3262.50	3294.40
6-2-09	3256.20	3227.00	3230.40
7-2-09	3233.00	3201.50	3212.30
10-2-09	3281.50	3256.00	3267.50
11-2-09	3283.50	3260.00	3263.80
12-2-09	3315.00	3286.30	3292.00
14-2-09	3315.00	3257.10	3309.30
17-02-09	3278.00	3249.50	3257.80
18-02-09	31 <mark>18.00</mark>	3091.40	3102.60


Abhishek bought one Sensex futures contract on February, 04 .The average daily absolute change in the value of contract is ₹ 10,000 and standard deviation of these changes is ₹2,000. The maintenance margin is 75% of initial margin.

You are required to determine the daily balances in the margin account and payment on margin calls, if any.

LOS 5: Concept of Compounding

<u>Example:</u> Computing EAR for Range of compounding frequency.

Using a stated rate of 6%, compute EARs for semi-annual, quarterly, monthly and daily compounding.

CA FINAL AFM SUMMARY NOTES

Solution:

EAR with:

Semi-annual Compounding	= (1+0.03) ² – 1	= 1.06090 - 1	= 0.06090	= 6.090%
Quarterly compounding	= (1+0.015) ⁴ – 1	= 1.06136 - 1	= 0.06136	= 6.136%
Monthly Compounding	= (1+0.005) ¹² - 1	= 1.06168 - 1	= 0.06168	= 6.168%
Daily Compounding	= (1+0.00016438) ³⁶⁵ – 1	= 1.06183 - 1	= 0.06183	= 6.183%

Notice here that the EAR increases as the compounding frequency increases.

Concept of e rt & e -rt (Continuous Compounding)

Most of the financial variable such as Stock price, Interest rate, Exchange rate, Commodity price change on a real time basis. Hence, the concept of Continuous compounding comes in picture.

Continuous Compounding means compounding every moment. Instead of (1 + r) we will use ert

Calculation of ab

- \sqrt{a} 12 Times 1.
- 2. - 1
- 3. × b
- 4. +1
- x = 12 Times

Calculation of eb

- \sqrt{e} 12 Times
- 2. - 1
- 3. × b
- +1
- × = 12 Times
- Hint: $e^1 = 2.71828$

How to Calculate e rt & e -rt

Example:

$e^0 = 1$	e ^{.25} = 1.28403
$e^{25} = 0.77880$	e ^{.205} = ?
or	e ^{.20} = 1.22140
$\frac{1}{1.28403}$ = 0.77880	e ^{.21} = 1.23368
1.28403	$\frac{1.22140+1.23368}{2}$ \Rightarrow 1.22754
e ^{.357} = ?	
e ^{.35} = 1.41907	
e ^{.36} = 1.43333	
Since 3 rd digit is not 5, in this case we have to use interpolation	
technique:	e357
when power of e increases by 0.01, then value increase by 0.01426	= = 0.69977
[1.43333 – 1.41907]	1.42905
when power of e increases by 1, then value increases by $\frac{0.01426}{0.01}$	
when power of e increases by 0.007, then value increases by $\frac{0.01426}{0.01}$	
× 0.007 = 0.00998	
Value of e ^{.357} = 1.41907 + 0.00998 = 1.42905	

Valuation Rules

LOS 6: Fair future price of security with no income

In case of Normal Compounding

Fair future price = Spot Price $(1+r)^n$

In case of Continuous Compounding

Fair future price = Spot Price × e rt

Where

r = risk free interest p.a. with Continuous Compounding.

t = time to maturity in years/days. (No. of days / 365) or (No. of months / 12)

QUESTION NO. 3B

The 6-months forward price of a security is ₹ 208.18. The borrowing rate is 8% per annum payable with monthly interests. What should be the spot price?

FFF = SR (1+
$$\frac{1}{2}$$
)

Responding.

FFF = SR (1+ $\frac{1}{2}$)

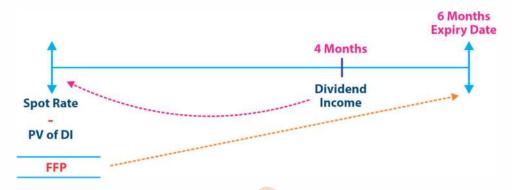
Responding.

FFF = SR (1+ $\frac{1}{2}$)

Responding.

FFF = SR (1+ $\frac{1}{2}$)

Responding.


6.8

CA FINAL AFM SUMMARY NOTES

EKAGRATA

with IMPORTANT QUESTIONS

LOS 7: Fair Future Price of Security with Dividend Income

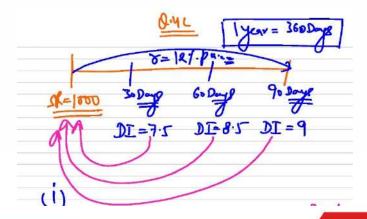
In case of Normal Compounding

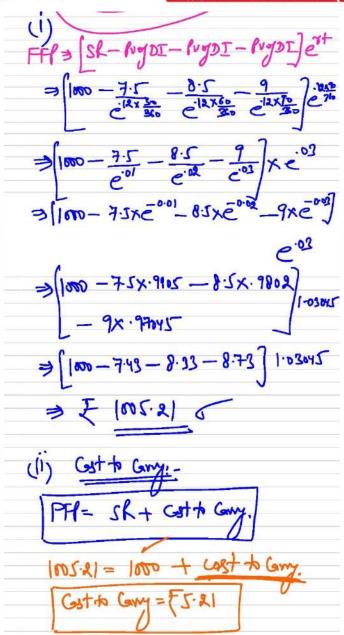
Fair Future Price = [Spot Price – PV of Expected Dividend] $(1+r)^n$

In case of Continuous Compounding

Fair Future Price = [Spot Price – PV of Expected Dividend] × e rt

PV of DI = Present Value of Dividend Income = Dividend × e -rt
Where t = period of dividend payments


QUESTION NO. 4C


Suppose that there is a future contract on a share presently trading at \mathbb{Z} 1000. The life of future contract is 90 days and during this time the company will pay dividends of \mathbb{Z} 7.50 in 30 days, \mathbb{Z} 8.50 in 60 days and \mathbb{Z} 9.00 in 90 days.

Assuming that the Compounded Continuously Risk free Rate of Interest (CCRRI) is 12% p.a. you are required to find out:

- (a) Fair Value of the contract if no arbitrage opportunity exists.
- (b) Value of Cost to Carry.

[Given $e^{-0.01} = 0.9905$, $e^{-0.02} = 0.9802$, $e^{-0.03} = 0.97045$ and $e^{0.03} = 1.03045$]

LOS 8: Fair Future Price of security when income is expressed in percentage or when dividend yield is given

In case of Normal Compounding

Fair Future Price = Spot Price [1+(r-y)] ⁿ

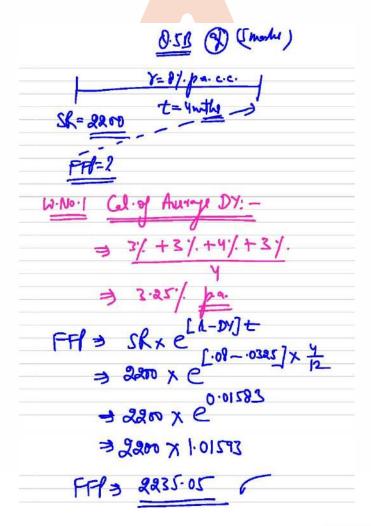
In case of Continuous Compounding

Fair Future Price = Spot Price × e^{(r-y) × t}

6.10

CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUESTIONS


Where y = income expressed in % or dividend Yield

QUESTION NO. 5B

On 31.8.2011, the value of Stock Index was ₹ 2,200. The risk free rate of return has been 8% per annum. The dividend yield on this Stock Index is as under:

Month	Dividend paid
January	3%
February	4%
March	3%
April	3%
May	4%
June	3%
July	3%
August	4%
September	3%
October	3%
November	4%
December	3%

Assuming that interest is continuously compounded daily, find out the future price of contract deliverable on 31-12-2011. Given: $e^{0.01583} = 1.01593$

CA FINAL AFM SUMMARY NOTES

with IMPORTANT QUEST

LOS 9: Fair Future Price of Commodity with storage cost

In case of Normal Compounding

Fair Future Price = [Spot Price + PV of S.C] (1+r) ⁿ

In case of Continuous Compounding

Fair Future Price = [Spot Price + PV of S.C.] × e^{rt}

Where PV of S.C = Present Value of Storage Cost

Note: Fair Future Price when Storage Cost is given in percentage(%).

FFP = Spot Price × e (r + s) × t

Where S = Storage cost expressed in percentage.

LOS 10: Fair Future Price of commodities with Convenience yield expressed in % (Similar to Dividend Yield)

The benefit or premium associated with holding an underlying product or physical good rather than contract or derivative product i.e. extra benefit that an investor receives for holding a commodity.

In case of Continuous Compounding

Fair Future Price = Spot Price × e^{(r-c)×t}

Note: Fair Future Price when convenience income is expressed in Absolute Amount.

Fair Future Price = [Spot Price - PV of Convenience Income] × e rt

LOS 11: Arbitrage Opportunity between Cash and Future Market

- Arbitrage is an important concept in valuing (Pricing) derivative securities. In its Purest sense, arbitrage is riskless.
- Arbitrage opportunities arise when assets are mispriced. Trading by Arbitrageurs will continue until they effect supply and demand enough to bring asset prices to efficient (no arbitrage) levels.
- Arbitrage is based on "Law of one price". Two securities or portfolios that have identical cash flows in future, should have the same price. If A and B have the identical future pay offs and A is priced lower than B, buy A and sell B. You have an immediate profit.

Difference between Actual Future Price and Fair Future Price?

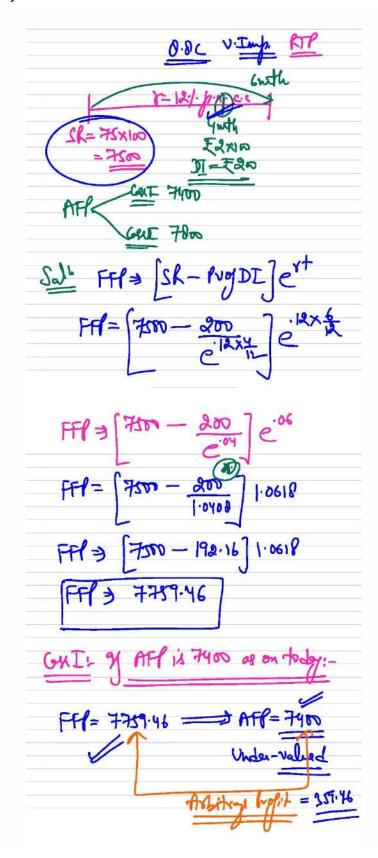
Fair Future Price is calculated by using the concept of Present Value & Future Value.

Actual Future Price is actually prevailing in the market.

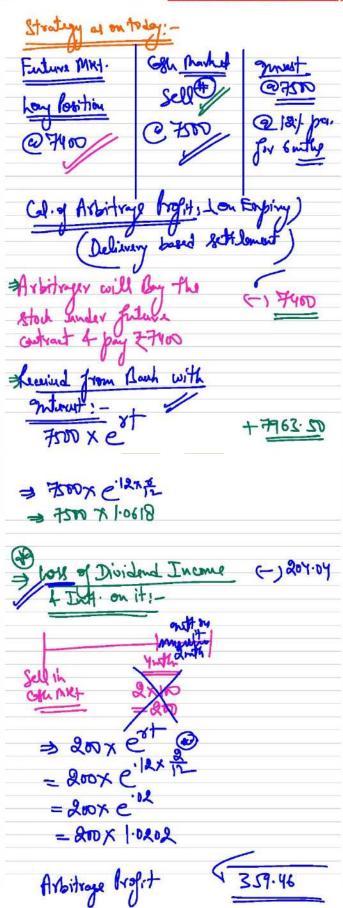
Case	Value	Future Market	Cash Market	Borrow/Invest
FFP < AFP	Over-Valued	Sell or Short Position	Buy	Borrow
FFP > AFP	Under-Valued	Buy or Long Position	Sell #	Investment

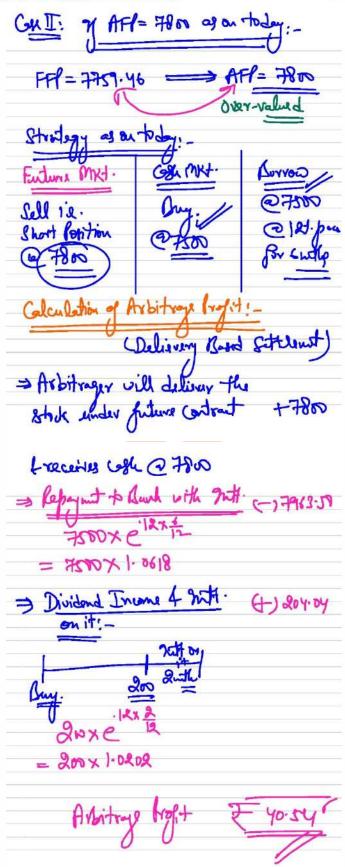
Here we assume that Arbitrager already hold shares

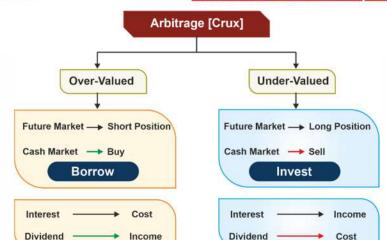
QUESTION NO. 8C

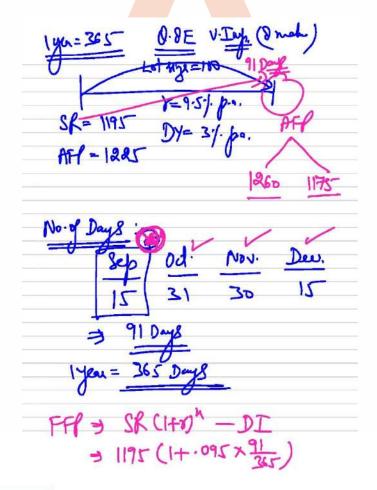

Calculate the price of a 6 months futures contract on a share that is currently priced at ₹75. The share is expected to pay a ₹ 2 dividend four months from today. The continuously compounded risk free rate is 12%

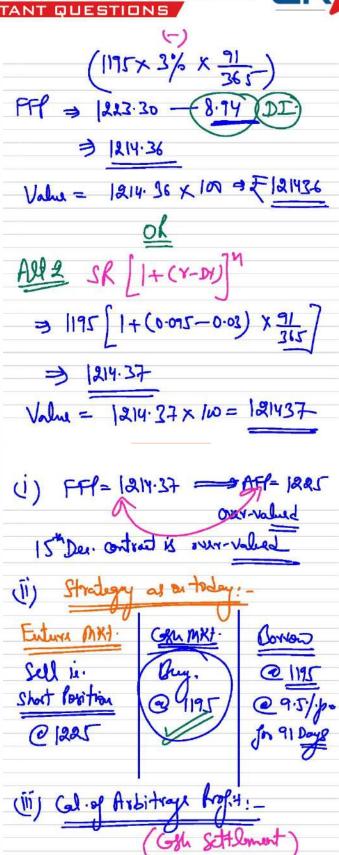
6.12


CA FINAL AFM SUMMARY NOTES

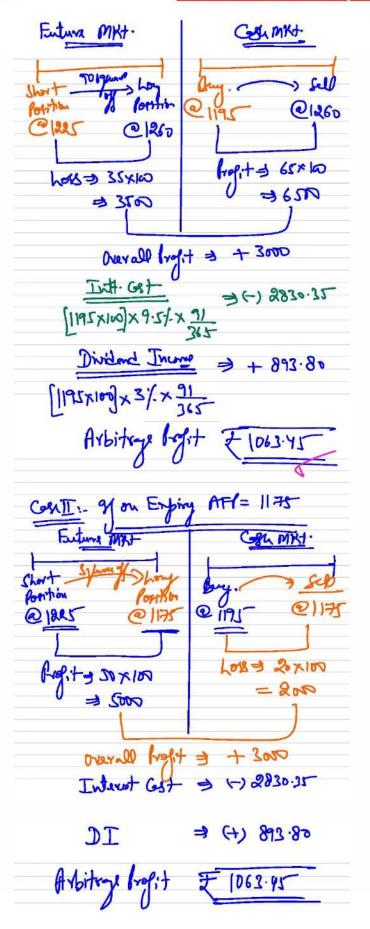

per annum. The contract size is 100. If the contract value is ₹ 7400 what steps (action) would follow. In case it is ₹ 7800. What would you do?






QUESTION NO. 8E

The NSE-50 Index futures are traded with rupee value being ₹ 100 per index point. On 15th September, the index closed at 1195, and December futures (last trading day December 15) were trading at 1225. The historical dividend yield on the index has been 3% per annum and the borrowing rate was 9.5% per annum.


- (i) Determine whether on September 15, the December futures were under priced or overpriced?
- (ii) What arbitrage transaction is possible to gain out this mispricing?
- Calculate the gains and losses if the index on 15th December closes at (a) 1260 (b) 1175. (iii) Assume 365 days in a year for your calculations.

Income

CRI: of on Enpiry AFP = 1260

6.18

CA FINAL AFM SUMMARY NOTES

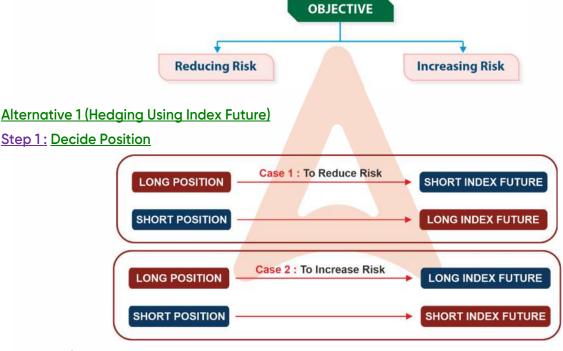
with IMPORTANT QUESTIONS

LOS 12: Complete Hedging by using Index Futures & Beta

Hedging is the process of taking an opposite position in order to reduce loss caused by Price fluctuation.

- The objective of Hedging is to reduce Loss.
- Complete Hedging means profit/ Loss will be Zero.

Position to be taken:


- a) Long Position should be hedged by Short Position.
- b) Short Position should be hedged by Long Position.

Value of Position to be taken:

Value of Position for Complete hedge should be taken on the basis of Beta through index futures.

Value of Position for Complete Hedge = Current Value of Portfolio × Existing Stock Beta

LOS 13: Value of Position for Increasing & Reducing Beta to a Target Level

Step 2: Value of Position

Case I: When Existing Beta > Target Beta

Objective: Reducing Risk

Value of Index Position = Value of Existing Portfolio × [Existing Beta – Desired Beta]

Action: Take Short Position in Index & keep your current position unchanged.

Case II: When Existing Beta < Target Beta

Objective: Increase Risk

Value of Index Position = Value of Existing Portfolio × [Desired Beta – Existing Beta]

Action: Take Long Position in Index & keep your current position unchanged

<u>Step 3 : No. of future contracts to be sold or purchased for increasing or reducing Beta to a Desired Level using Index Futures.</u>

No. of Future Contract to be taken = $\frac{Value \text{ of Index Position}}{Value \text{ of one Future Contract}}$

with IMPORTANT QUESTIONS

Alternative 2 (Hedging Using Risk free Investment or Borrowing)

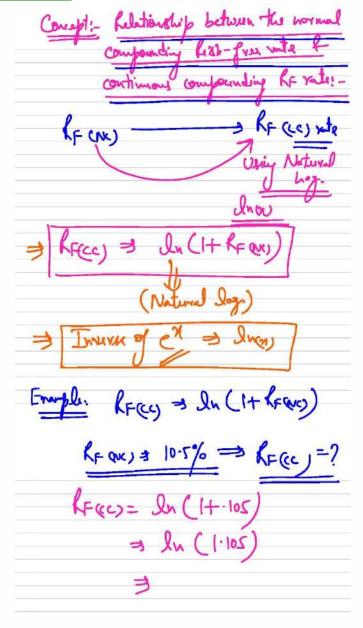
Case 1: Reducing Risk

SELL SOME SECURITIES AND REPLACE WITH RISK-FREE INVESTMENT

Step1: Equate the weighted Average Beta formulae to the new desired Beta

Target Beta = Beta₁ \times W₁ + Beta₂ \times W₂ (Beta of Risk free investment is Zero)

Step2: Use the weights and decide


Case 2: Increasing Risk

BUY SOME SECURITIES AND BORROW AT RISK-FREE RATE

Step1: Equate the weighted Average Beta formulae to the new desired Beta

Target Beta = Beta₁ \times W₁ + Beta₂ \times W₂ (Beta of Risk free investment is Zero)

Step2: Use the weights and decide

W.No: Table In (1105) = ? Derivatives Analysis & Valuation (Futures) ⇒ 0.0923+ 0.1044 ⇒ 0.0923+ 0.1044 In (1.105) = 0.0998 or 9.98% Re(nc) = 10.5% == Re(c) = 9.90) 1.09426 1.1052 0-011 0.011 × . 2018. 0.0108 0.0791 1.0742 + 0.0108 RECE = Un CI+ RECONS

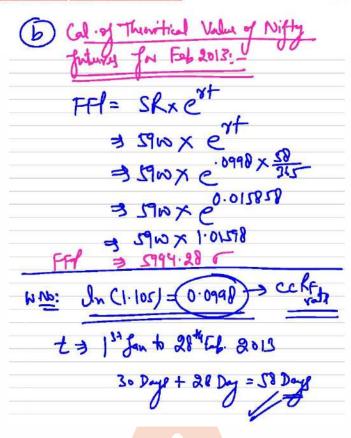
with IMPORTANT QUESTIONS

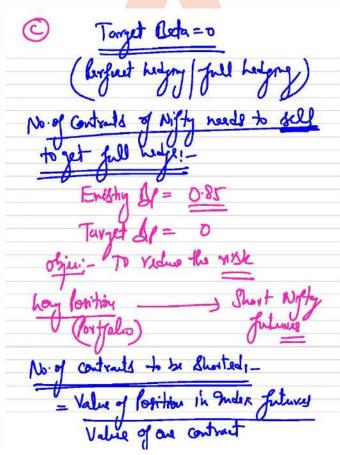
QUESTION NO. 10C

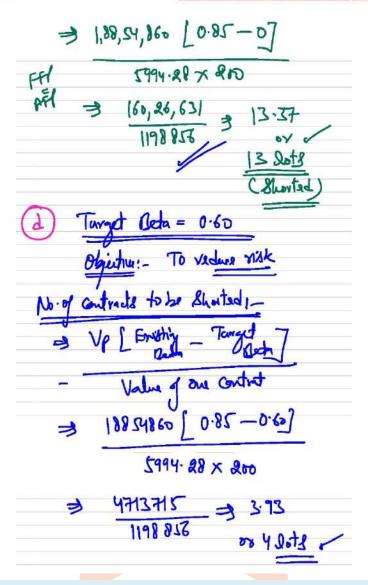
On January 1, 2013 an investor has a portfolio of 5 shares as given below:

Security	Price	No. of Shares	Beta
Α	349.30	5,000	1.15
В	480.50	7,000	0.40
С	593.52	8,000	0.90
D	734.70	10,000	0.95
Е	824.85	2,000	0.85

The cost of capital to the investor is 10.5% per annum.


You are required to calculate:


- a) The beta of his portfolio.
- b) The theoretical value of the NIFTY futures for February 2013.
- c) The number of contracts of NIFTY the investor needs to sell to get a full hedge until February for his portfolio if the current value of NIFTY is 5900 and NIFTY futures have a minimum trade lot requirement of 200 units. Assume that the futures are trading at their fair value.
- d) The number of future contracts the investor should trade if he desires to reduce the beta of his portfolios to 0.6.


No. of days in a year be treated as 365. Given: In (1.105) = 0.0998, $e^{(0.015858)} = 1.01598$

		0	·loc		
(e)	(al. 0	1 lorte	Lio Medar		0 =
Lu	Shares	MES	MV	A	$g_i \perp_i$
A	000	349.30	1746500	1.12	208475
0	Orof	05.18h	3363790	סיים	1342,400
C	8000	23.25	4748 160	0.90	4273344
D	0,500	734.70	7347000	0.95	
E	2010	824.85	ונאין אים	0-82	1402245
		SI	188,54,86		1600 9/114
	Sp=	ZGI SI.	<u> </u>	862 88 11,6003	
	Enu	sating by		85 4m	1

QUESTION NO. 10H

The Following data relate to A Ltd.'s Portfolio:

Shares	X Ltd.	Y Ltd.	Z Ltd.
No. of Shares (lakh)	6	8	4
Price per share (₹)	1000	1500	500
Beta	1.50	1.30	1.70

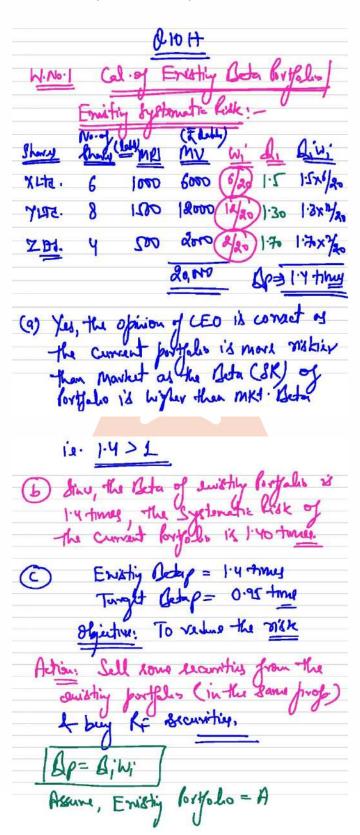
The CEO is of opinion that the portfolio is carrying a very high risk as compared to the market risk and hence interested to reduce the portfolio's systematic risk to 0.95. Treasury Manager has suggested two below mentioned alternative strategies:

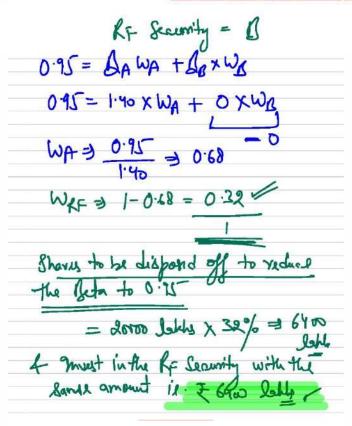
- (i) Dispose off a part of his existing portfolio to acquire risk free securities, or
- (ii) Take appropriate position on Nifty Futures, currently trading at 8250 and each Nifty points multiplier is ₹ 210.

You are required to:

- (a) Interpret the opinion of CEO, whether it is correct or not.
- (b) Calculate the existing systematic risk of the portfolio,
- (c) Advise the value of risk-free securities to be acquired,
- Advise the number of shares of each company to be disposed off, (d)

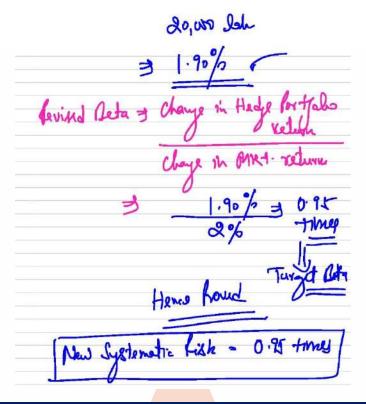
6.24


CA FINAL AFM SUMMARY NOTES



with IMPORTANT QUESTIONS

- (e) Advise the position to be taken in Nifty Futures and determine the number of Nifty contracts to be bought/sold; and
- (f) Calculate the new systematic risk of portfolio if the company has taken position in Nifty Futures and there is 2% rise in Nifty.


Note: Make calculations in ₹ lakh and upto 2 decimal points.

Mrssl 6400×6/20 => 19/20 1000 Kita. YLTE. 87.8 cast ores = 08/14 at 8 88.1 COD OFF E OSP X 000) 744 6400

LOS 14: Partial Hedge

Value of position in Index Future = Value of existing Portfolio × Existing beta × percentage (%) to be Hedge

- It result into Over-Hedged or Under-Hedged Position
- There may be profit or loss depending upon the situation.

QUESTION NO. 11

On April 1, 2015, an investor has a portfolio consisting of eight securities as shown below:

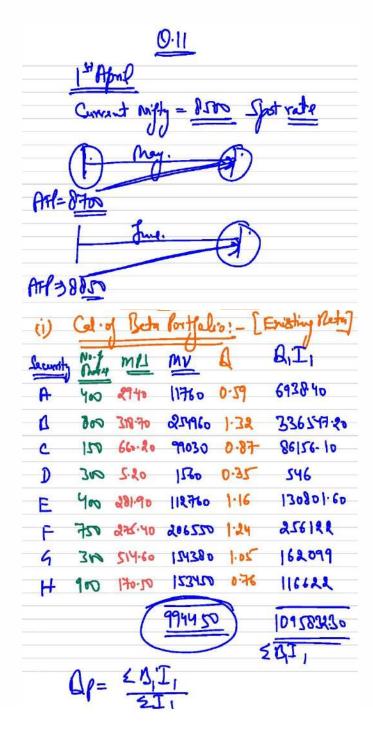
0 ''	M 1 (B)	N COL	5
Security	Market Price	No. of Shares	Beta Value
Α	29.40	400	0.59
В	318.70	800	1.32
С	660.20	150	0.87
D	5.20	300	0.35
E	281.90	400	1.16
F	275.40	750	1.24
G	514.60	300	1.05
Н	170.50	900	0.76

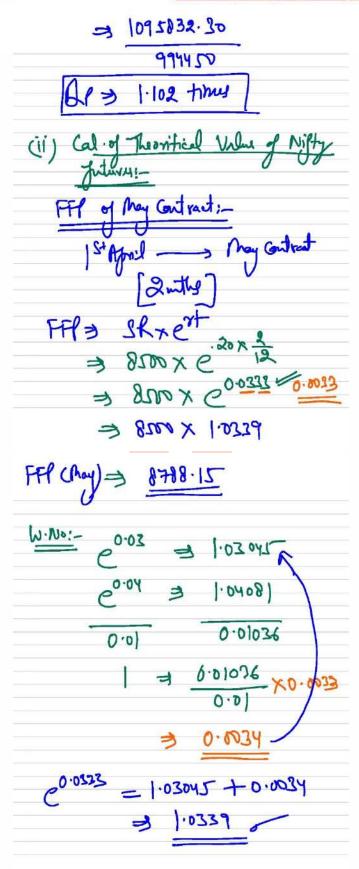
The cost of capital for the investor is 20% p.a. continuously compounded. The investor fears a fall in the prices of the shares in the near future. Accordingly, he approaches you for the advice to protect the interest of his portfolio.

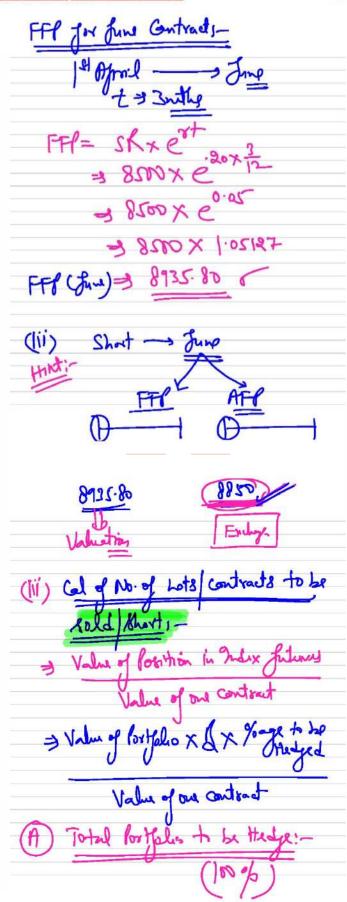
You can make use of the following information:

- a) The current NIFTY value is 8500.
- b) NIFTY futures can be traded in units of 25 only.
- c) Futures for May are currently quoted at 8700 and Futures for June are being quoted at 8850.

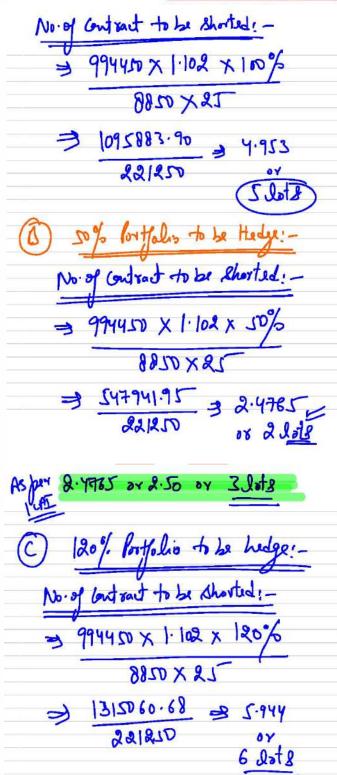
CA FINAL AFM SUMMARY NOTES


with IMPORTANT QUESTIONS


You are required to calculate:


- (i) the beta of his portfolio.
- (ii) the theoretical value of the futures contract for contracts expiring in May and June.

Given ($e^{0.03}$ = 1.03045, $e^{0.04}$ = 1.04081, $e^{0.05}$ = 1.05127)


- (iii) the number of NIFTY contracts that he would have to sell if he desires to hedge until June in each of the following cases :
 - A. His total portfolio
 - B. 50% of his portfolio
 - C. 120% of his portfolio

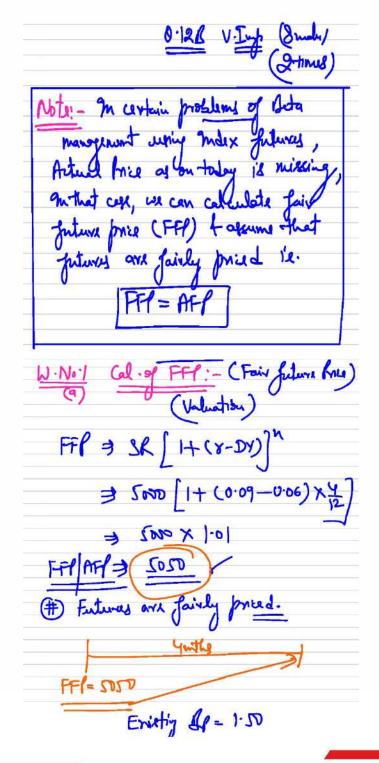
LOS 15: Beta of a Cash and Cash Equivalent

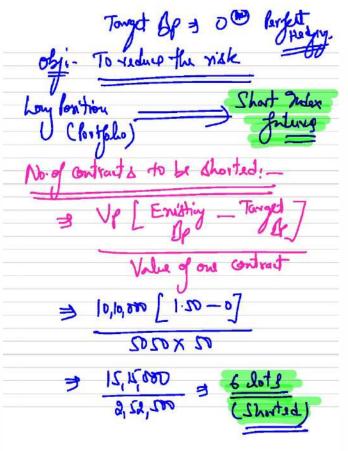
Beta of a cash and Risk free security is Zero.

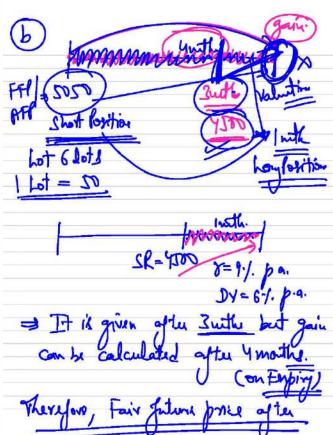
QUESTION NO. 12B

Current value of BSE Index (SR)	5000
Value of portfolio	₹ 10,10,000

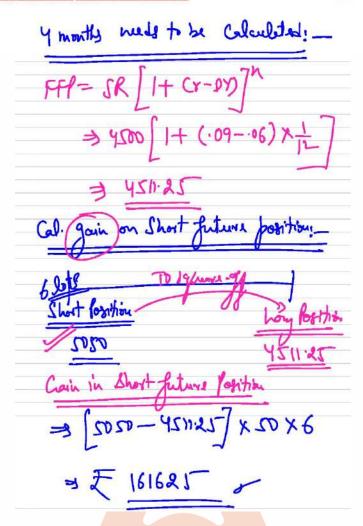
CA FINAL AFM SUMMARY NOTES

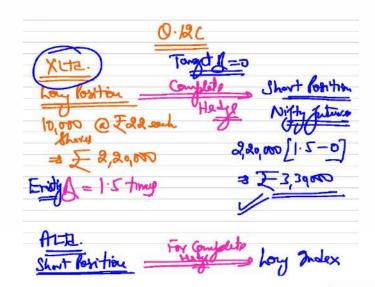


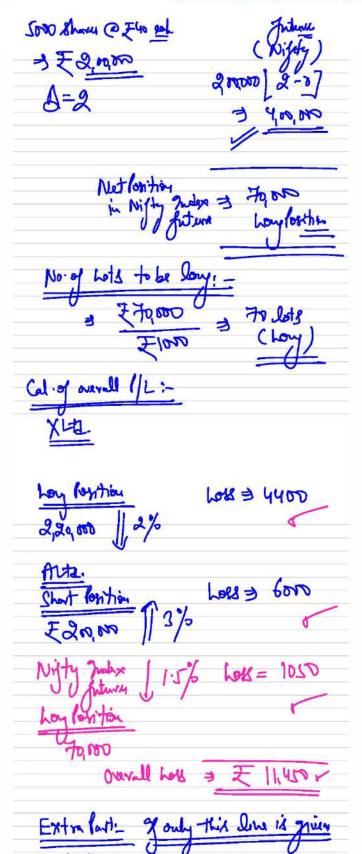

with	IMPO	RTANT	QUE	STION!	5

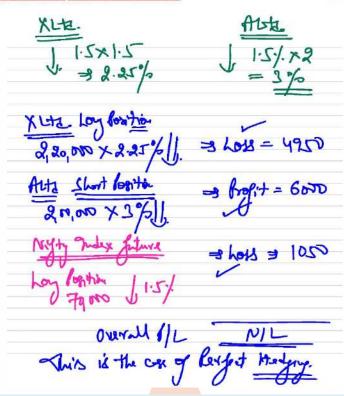

Risk free interest rate	9% p.a.
Dividend yield on Index	6% p.a
Beta of portfolio	1.5

We assume that a future contract on the BSE index with four months maturity is used to hedge the value of portfolio. One future contract is for delivery of 50 times the index. Based on the above information. Calculate:


- a) Fair Future Price of Future Contract.
- b) Calculate the gain on short futures position after 4 months with the help of index if it turns out to be 4,500 in three months.

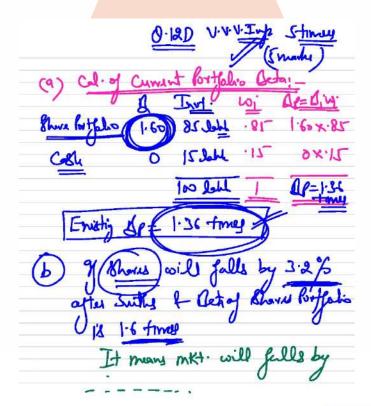


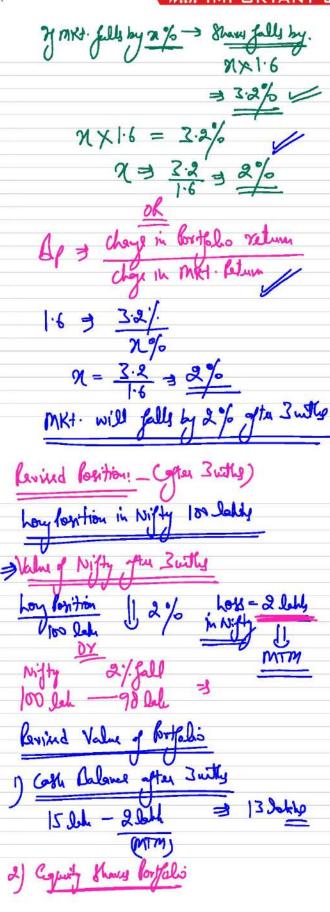

with IMPORTANT QUESTIONS

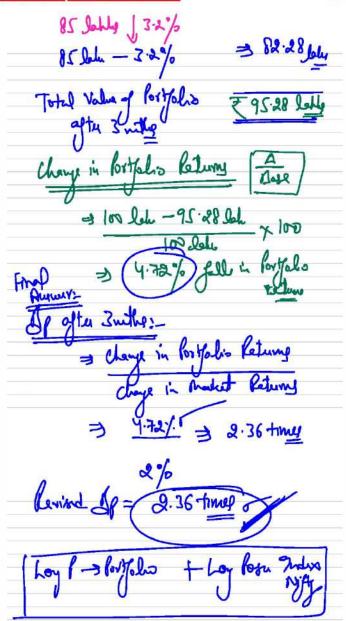


QUESTION NO. 12C

Ram buys 10000 shares of X Ltd. at a price of ₹ 22 per share whose Beta value is 1.5 and sells 5000 shares of A Ltd. at a price of ₹ 40 per share having a Beta value of 2. He obtains a complete hedge by Nifty futures at ₹ 1000 each. He closes out position at the closing price of the next day when the share of X Ltd dropped by 2%, share of A Ltd. appreciated by 3 % and Nifty futures dropped by 1.5%. What is the overall profit / Loss to Ram?




QUESTION NO. 12D


A trader is having in its portfolio shares worth ₹ 85 Lakhs at current price and cash ₹ 15 Lakhs. The Beta of the share portfolio is 1.6. After 3 months the price of shares dropped by 3.2 %.

- Determine:
 a) Current portfolio beta.
- b) Portfolio beta after 3 Months if the trader on current date goes long position on ₹ 100 Lakhs Nifty Futures.

LOS 16: Concept of Contango & Backwardation

Contango vs Backwardation

Contango and backwardation are terms used to describe the observed difference between the spot, or cash, price and futures prices for a commodity.

What is contango?

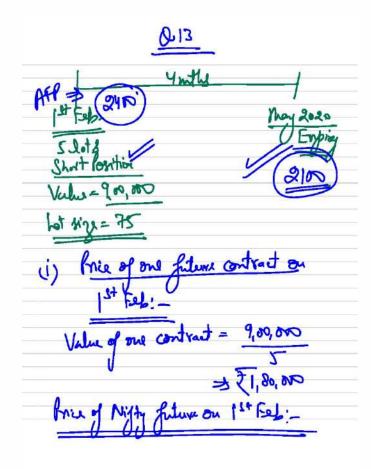
Contango describes an upward sloping curve where the prices for future delivery are higher than the spot price (e.g., the price of gold delivered in 1 year is 1,400/oz and the spot price is 1,200/oz). Contango is common in the gold industry, where the commodity is non-perishable and there are storage costs.

Contango exists for multiple reasons including inflation, carry costs (storage and insurance), and expectations that real prices will be higher in the future.

What is backwardation?

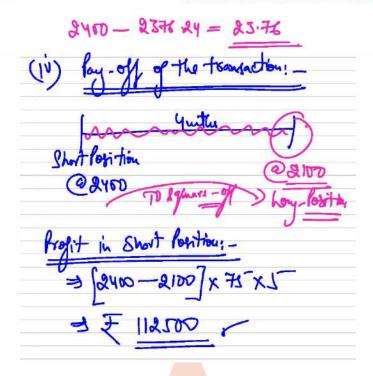
Backwardation describes a downward sloping curve where the prices for future delivery are lower than the spot price (e.g., the price of oil delivered in 3 months is \$40/bbl and the spot price is \$50/bbl).

with IMPORTANT QUESTIONS


Backwardation exists for various reasons, including short-term events that can cause the spot price to rise above future prices. For example, if a major drought causes wheat crops to suffer then the spot price may spike up above the future prices, when growing conditions are expected to be normal again.

QUESTION NO. 13

Mr. SG sold five 4-Month Nifty Futures on 1st February 2020 for ₹ 9,00,000. At the time of closing of trading on the last Thursday of May 2020 (expiry), Index turned out to be 2100. The contract multiplier is 75. Based on the above information calculate:


- (i) The price of one Future Contract on 1st February 2020.
- (ii) Approximate Nifty Sensex on 1st February 2020 if the Price of Future Contract on same date was theoretically correct. On the same day Risk Free Rate of Interest and Dividend Yield on Index was 9% and 6% p.a. respectively.
- (iii) The maximum Contango/Backwardation.
- (iv) The pay-off of the transaction.

Note: Carry out calculation on month basis.

=> 1,00,000 = 2400
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(ii) Current Nighty Price on 1st Feb: -
je Spot leite:
Nighty Julius Ane on 1 st Feb = 2400
Future are Jairly pried
Is. FFF = AFF = 2400
Spot Nijty on 1th Feb: -
FF1= SR [1+ (x-D)]"
2400 = SR [1+ (.0906) x 4]
2400 = SK (1+.01)
SR= 2400 => 2376.24
(iii) Contago Machwardetion !_
7 0 1
SR = 2376.24
FR = 240
FR>SR -> Contango
Dayis = FR - SR
= 2400 - 2376.24
⇒ 23-76 8
=> Hara, Sh is less than future price,
This is a cost of contaugo of maximum contaugo shall be :-
contango shall be :-
0

LOS 17: Hedging Commodity Risk Through Futures

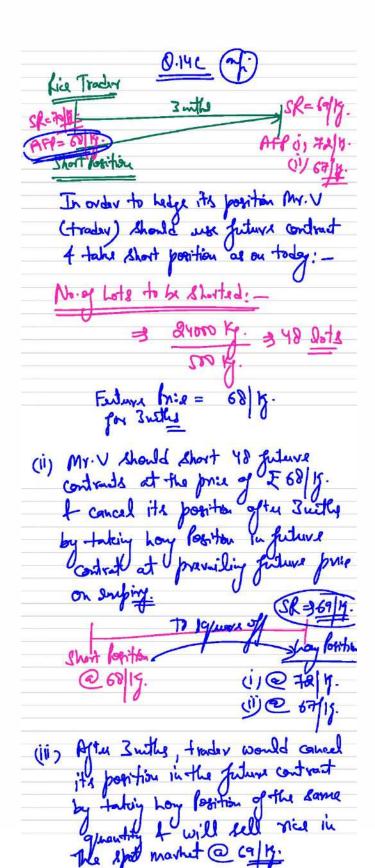
QUESTION NO. 14C

Mr. V is a commodity trader and specialized himself in trading of rice. He has 24,000 Kg. of rice. The following details are available as on date:

Spot price	₹/Kg.	70
3 month's future is trading at	₹/Kg.	68
Expected Lower price after 3 months	₹/Kg.	64
Contract size	500 Kg.	contract
You are required to advise to Mr. V:		

- (i) How to mitigate the risk of fall in price.
- (ii) How to use the futures market.

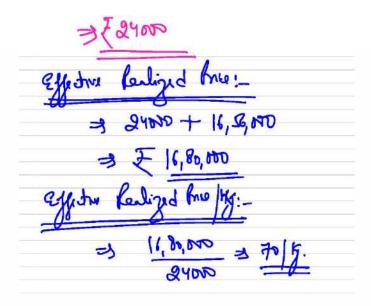
6.42


CA FINAL AFM SUMMARY NOTES

EKAGRATA F Hall F Halled F Hall F Halled F Hall F Halled F Hall F Halled F Halled

(iii) What will be the effective realized price for his sales if, after 3 months, spot price is ₹ 69/ Kg. and the 3 months future contract price is

a. ₹72/ Kg.


b. ₹ 67/Kg.

CA FINAL AFM SUMMARY NOTES

LOS 18: Hedge Ratio

The Optional Hedge Ratio to minimize the variance of Hedger's position is given by:-

Hedge Ratio = Corr. (r)
$$\frac{\sigma_S}{\sigma_F}$$

 $\sigma_S = S.D \text{ of } \Delta S$

 σ_F = S.D of Δ F

r = Correlation between \triangle S and \triangle F

 Δ S = Change in Spot Price

 Δ F = Change in Future Price

QUESTION NO. 15B

A company is long on 10 MT of copper @ ₹534 per kg (spot) and intends to remain so for the ensuing quarter. The variance of change in its spot and future prices are 16% and 36% respectively, having correlation coefficient of 0.75. The contract size of one contract is 1,000 kgs.

Required:

- (i) Calculate the Optimal Hedge Ratio for perfect hedging in Future Market.
- Advice the position to be taken in Future Market for perfect hedging.

Determine the number and the amount of the copper futures to achieve a perfect hedge.

Solution:

The optional hedge ratio to minimize the variance of Hedger's position is given by:

H=ρ $\frac{\sigma S}{\sigma F}$

Where

 σ S = Standard deviation of Δ S (Change in Spot Prices)

 σF =Standard deviation of ΔF (Change in Future Prices)

 ρ = coefficient of correlation between ΔS and ΔF

H = Hedge Ratio

 ΔS = change in Spot price.

 ΔF = change in Future price. Accordingly

Standard deviation of $\Delta S = \sqrt{(16\%)} = 4\%$ and

Standard deviation of $\Delta F \sqrt{(36\%)}=6\%$ and

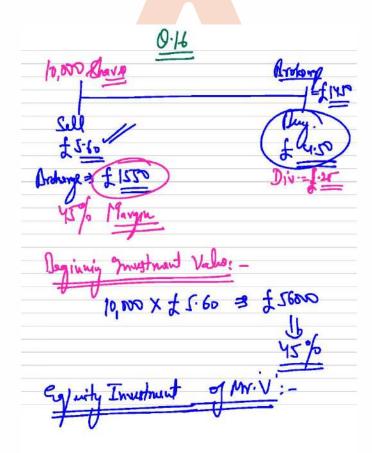
 $H = 0.75 \times \frac{0.04}{0.06} = 0.5$

CA FINAL AFM SUMMARY NOTES

Since the company is long position in Spot (Cash) Market it shall take Short Position in Future Market. Since contact size of one contract is 1,000 Kg,

No. of contract to be short = $(10000 \text{ kgs})/(1000 \text{ kgs}) \times 0.50 = 5 \text{ Contracts}$ Amount = Rs. $5000 \times 534 = Rs. 26,70,000$

LOS 19: Calculation of Rate of Return


	Increase or Decrease in Stock Price (P ₁ – P ₀)
(+)	Dividend Received
(-)	Transaction Cost
(-)	Interest Paid on Borrowed Amount
	Net Amount Received

Rate of return =
$$\frac{\text{Net Amount Received}}{\text{Total Initial Equity Investment}} \times 100$$

QUESTION NO. 16

Mr. V decides to sell short 10000 shares of ABC plc, when it was selling at yearly high of £5.60. His broker requested him to deposit a margin requirement of 45% and commission of £1550 while Mr. V was short the share, the ABC paid a dividend of £0.25 per share. At the end of one year Mr. V buys 10,000 shares of ABC plc at £4.50 to close out position and was charged a commission of £1450.

You are required to calculate the return on investment of Mr. V.

= \$ 1.000 × AZ\$ + € 1220
> 12520 + 11550
Aspen 10AI
Not Halit Generali-
Profit = [15.60 - 14.70] x 19,000 = f 11,000
Less: Drokange: - = f 3000
(\$1300 + £ 1420)
her. Loss of Dividend = 1 200
£ 0.25 × 10,000
Not Profit Beceived £ 1500
(d) of leturn: = £ 5500 ×100 = 20:56% £ 26750 p.a.
£ 2(750 p.a.