
CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM

Security Valuation

Study Session 2

LOS1: Introduction

LOS 2: Dividend Decision

Note: Total Earnings mean Earnings available to equity share holders

Income Statement

Sales

Variable cost Less:

Contribution

Less: Fixed cost excluding Dep.

EBITDA

Less: **Depreciation and Amortization**

EBIT

Less: Interest

EBT

Less: Tax

EAT

Preference Dividend Less:

Earnings Available to Equity Share holders

Equity Dividend Less:

T/F to R&S

LOS 3: SOME BASIC RATIOS

Total earning available to equity shareholders EPS Total number of equity shares

Total dividend paid to equity shareholders **DPS** Total number of equity shares

= Total Market Value/ Market Capitalization/ Market Cap **MPS**

Total number of equity shares

Total Retained earnings REPS Total number of equity shares

OR

= EPS - DPS **REPS**

 $= \frac{\text{Dividend per share}}{\text{Market price per share}} \times 100$ **Dividend Yield**

 $= \frac{\text{Dividend per share}}{\text{Earning per share}} \times 100$ Dividend pay-out Ratio

 $= \frac{\text{Dividend per share}}{\text{Face value per share}} \times 100$ **Dividend Rate**

 $= \frac{\text{Earning per share}}{\text{Market Price per share}} \times 100$ **Earning Yield**

P/E Ratio

 $= \frac{\text{Retained Earning per share}}{\text{Earning per share}} \times 100$ **Retention Ratio**

 $= \frac{EPS - DPS}{EPS} \times 100$

OR

= 1 - Dividend Payout Ratio **Retention Ratio**

Note:

Relationship Between DPR & RR:

RR + DPR = 100% or 1

Dividend yield and Earning Yield is always calculated on annual basis.

2.3

Educator CA Inter FM/CA Final AFM

- Dividend is 1st paid to preference share holder before any declaration of dividend to equity shareholders.
- Dividend is always paid upon FV(Face Value) not on Market Value.

LOS 4: Define Cash Dividends, Stock Dividend, Stock Split

<u>Cash Dividends:</u> As the name implies, are payments made to shareholders in cash. They come in 3 forms:

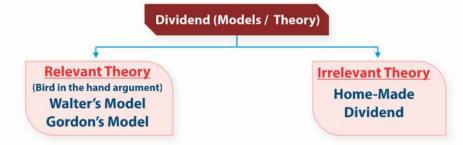
- (i) Regular Dividends: Occurs when a company pays out a portion of profits on a consistent basis. E.g. Quarterly, Yearly, etc.
- (ii) Special Dividends: They are used when favourable circumstances allow the firm to make a one-time cash payment to shareholders, in addition to any regular dividends. E.g. Cyclical Firms
- (iii) Liquidating Dividends: Occurs when company goes out of business and distributes the proceeds to shareholders.

Stock Dividends (Bonus Shares):

- Stock Dividend are dividends paid out in new shares of stock rather than cash. In this case, there will be more shares outstanding, but each one will be worth less.
- Stock dividends are commonly expressed as a percentage. A 20% stock dividend means every shareholder gets 20% more stock.

Stock Splits:

- Stock Splits divide each existing share into multiple shares, thus creating more shares. There are now more shares, but the price of each share will drop correspondingly to the number of shares created, so there is no change in the owner's wealth.
- Splits are expressed as a ratio. In a 3-for-1 stock split, each old share is split into three new shares.
- Stock splits are more common today than stock dividends.


Effects on Financial ratios:

- Paying a cash dividend decreases assets (cash) and shareholders' equity (retained earnings). Other things equal, the decrease in cash will decrease a company's liquidity ratios and increase its debtto-assets ratio, while the decrease in shareholders' equity will increase its debt-to-equity ratio.
- Stock dividends, stock splits, and reverse stock splits have no effect on a company's leverage ratio or liquidity ratios or company's assets or shareholders' equity.

LOS 5 : Ex – Dividend and Cum – Dividend Price of a share

- If Question is Silent, always Assume Ex- Dividend price of share.
- If cum-dividend price is given, we must deduct dividend from it.
- It may be noted that in all the formula, we consider Ex-Dividend & not Cum-Dividend.

LOS 6: Valuation Models based on Earnings & Dividends

Walter's Model:

Walter's supports the view that the dividend policy plays an important role in determining the market price of the share.

He emphasis two factors which influence the market price of a share:-

- (i) Dividend Payout Ratio.
- (ii) The relationship between Internal return on Retained earnings (r) and cost of equity capital (K_e)

Walter classified all the firms into three categories:-

a) Growth Firm:

- If $(r > K_e)$. In this case, the shareholder's would like the company to retain maximum amount i.e. to keep payout ratio quite low.
- * In this case, there is negative correlation between dividend and market price of share.
- If r > K_e, Lower the Dividend Pay-out Ratio Higher the Market Price per Share & vice-versa. *

b) Declining Firm:

- If $(r < K_e)$. In this case, the shareholder's won't like the firm to retain the profits so that they can get higher return by investing the dividend received by them.
- In this case, there is positive correlation between dividend and market price of share.
- If r < K_e, Higher the Dividend Pay-out Ratio, Higher the Market Price per Share & vice-versa.

c) Constant Firm:

- If rate of return on Retained earnings (r) is equal to the cost of equity capital (K_e) i.e.(r = K_e). In this case, the shareholder's would be indifferent about splitting off the earnings between dividend & Retained earnings.
- If r = K_e, Any Retention Ratio or Any Dividend Payout Ratio will not affect Market Price of share. MPS will remain same under any Dividend Payout or Retention Ratio.

Note: Walter concludes:-

- The optimum payout ratio is NIL in case of growth firm.
- The optimum payout ratio for declining firm is 100%
- The payout ratio of constant firm is irrelevant.

Summary: Optimum Dividend as per Walter's

Category of the Firm	r Vs. K _e	Correlation between DPS & MPS	Optimum Payout Ratio	Optimum Retention Ratio
Growth	r >K _e	Negative	0 %	100 %
Constant	r = K _e	No Correlation	Every payout is Optimum	Every retention is Optimum
Decline	r <k<sub>e</k<sub>	Positive	100%	0 %

Valuation of Equity as per Walter's

Current market price of a share is the present value of two cash flow streams:-

- a) Present Value of all dividend.
- b) Present value of all return on retained earnings.

In order to testify the above, Walter has suggested a mathematical valuation model i.e.,

$$p_0 = \frac{DPS}{K_e} + \frac{\frac{r}{K_e}(EPS - DPS)}{K_e}$$

Educator CA Inter FM/CA Final AFM

When

Current price of equity share (Ex-dividend price)/ Fair or Theoretical or Intrinsic or P_0 Equilibrium or present Value Price per Share

DPS Dividend per share paid by the firm =

Rate of return on investment of the firm / IRR / Return on equity r =

Cost of equity share capital / Discount rate / expected rate of return/opportunity K_e = cost / Capitalization rate

EPS Earnings per share of the firm EPS - DPS **Retained Earning Per Share**

Assumptions:

DPS & EPS are constant.

K_e & r are constant.

Going concern assumption, company has infinite life.

No external Finance

QUESTION NO. 1B

Following figures are collected from annual report of A Ltd.

Net Profit	₹ 30.00 Lacs
Outstanding 12% Preference Shares	₹ 100.00 Lacs
Number of Equity Shares	3,00,000
Return on Investment	20%
Ke	16%

What should be the approximate dividend payout ratio so as to keep share price at ₹ 42, use Walter Model? **Solution:**

0.10
PAT = 30 lakly
DPS=? DPR=?
DPS = ? DPR = ?
Sol4. W. No.1
PAT 30,00,000
(-) Pref. Div. 12,00,000
(12). (x 100 lette)
Early for Eguaty 18,00,000
- No. of say. Shows 3,00,000
EPS 6 Share
As per Walturd : -
M3 M

LOS 7 : Gordon's Model/Growth Model/ Dividend discount Model

- Gordon's Model suggest that the dividend policy is relevant and can effect the value of the share.
- 4 Dividend Policy is relevant as the investor's prefer current dividend as against the future uncertain Capital Gain
- Current Market price of share = PV of future Dividend, growing at a constant rate

$$P_0 = \frac{D_0 (1+g)}{K_e - g_c} OR P_0 = \frac{D_1 (next expected dividend)}{K_e - g_c} OR P_0 = \frac{EPS_1 (1-b)}{K_e - br}$$

- P_0 = Current market price of share.
- = Cost of equity capital / Discount rate / expected rate of return / Opportunity cost/ K_e Capitalization rate.

Educator CA Inter FM/CA Final AFM

CA FINAL AFM SUMMARY

= Growth rate g

= DPS at the end of year / Next expected dividend / Dividend to be paid D_1

= Current year dividend / dividend as on today / last paid dividend

EPS₁ = EPS at the end of the year

b = Retention Ratio

1-b = Dividend payout Ratio

Note:

Watch for words like 'Just paid' or 'recently paid', these refers to the last dividend Do and words like ' will pay ' or ' is expected to pay ' refers to D_1 .

Assumptions:

- (i) No external finance is available.
- (ii) K_e& r are constant.
- (iii) 'g' is the product of its Retention Ratio 'b' and its rate of return 'r'

$$g = b \times r OR g = RR \times ROE$$

- (iv) $K_e > g$
- (v) g & RR are constant.
- (vi) Firm has an infinite life

Applications

1. $EPS_1(1-b) = DPS_1$

Proof:

EPS₁ (1-b) = EPS₁ × Dividend payout Rate
= EPS₁ ×
$$\frac{DPS1}{EPS1}$$

= DPS₁

We know that DPR + RR = 1 or 100%

2. If EPS = DPS, RR = 0 then q = 0

$$P_0 = \frac{D_0 (1+g)}{K_e - g}$$
 $P_0 = \frac{D_0}{K_e} \text{ as } g = 0$
 $P_0 = \frac{EPS}{K_e} \quad (\because EPS = DPS)$

3. Calculation of P₁ (Price at the end of year 1)

Price at the beginning = PV of Dividend at end + PV of market price at end

$$P_0 = \frac{D_1 + P_1}{(1 + K_e)}$$

4.
$$K_e = \frac{1}{P.E \text{ Ratio}}$$

Note:

The above equation for calculating K_e should only be used when no other method of calculation is available.

QUESTION NO. 2A

A share of T Ltd. is currently quoted at a price-earnings ratio of 7.5 times. The retained earnings per share being 37.5% is ₹ 3 per share. Compute:

a) The company's cost of equity if investors expect annual growth rate of 12%

- b) If anticipated growth rate is 13% p.a., calculate indicated market price with same cost of equity.
- c) If the company's cost of Equity is 18% and anticipated growth rate is 15% p.a., calculate the market price per share assuming other conditions remain the same.

QUESTION NO. 2E

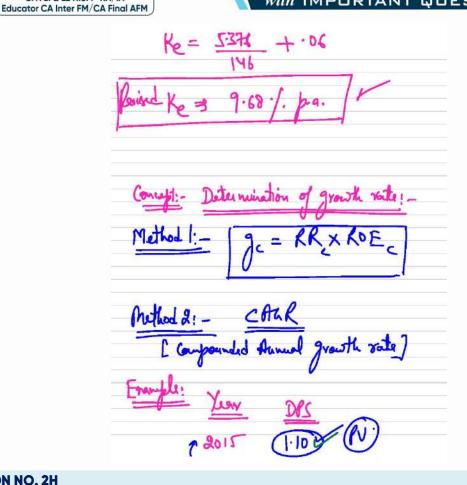
With the help of following figures calculate the market price of a share of a company by using (i) Walter's Formula, (ii) Dividend Growth Model (Gordon's Formula)

Earnings per Share (EPS)	₹ 10
Dividend per Share (DPS)	₹6
Cost of Capital (K)	20%
Internal Rate of Return on Investment	25%
Retention Ratio	40%

2.11

CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM

QUESTION NO. 2G

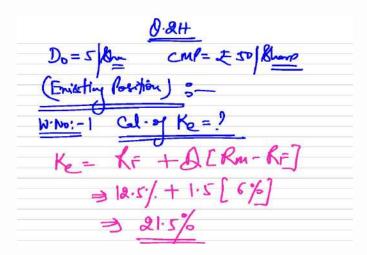

In December, 2011 AB Co.'s share was sold for ₹ 146 per share. A long term earnings growth rate of 7.5% is anticipated. AB Co. is expected to pay dividend of ₹ 3.36 per Share.

- a) What rate of return an investor can expect to earn assuming that dividends are expected to grow along with earnings at 7.5% per year in perpetuity?
- b) It is expected that AB Co. will earn about 10% on book Equity and shall retain 60% of earnings. In this case, whether, there would be any change in growth rate and Cost of Equity?

0.29 V.V. Tay.
10= 146 Marx D_= 3.31 Blave
10= 146/Marx D_= 3.31/Khave g=7.5%
(1) Ke=? g=7.5/. from
As per Gordon & Model!
Po = Do CI+J) or D1 Ke-gi Ke-ge
146 = 3.36 Ke 675
Ke = 9.80/. pa.
(b) Y=10% RR=60%
B = 10/2
g=? Ke=?
Revind j' = J = RRXRIE = 60% X 10%
9 =1 6% has
Hind: 3 = 6 % pra.
Drs. Drs. New
1000
W-No.1 60% 40%
> Accordingly, dividend will also get
changed and to cal ke , first we
Accordingly, dividend will also get changed and to cal. he first we should calculate previous RR 4-than EPS, assuming the rate of return on
(N

Previous KR:-DIS, = 3.36 | Mm.

Ell, = 3.36 | Mm. Now 100% ov ERS, = 3.26
25%. Now ravind RR= 60% DR= 40%. Now Living DPS, = 13.44 × 40% 6=146 D11,-5-376 9=6%



QUESTION NO. 2H

Abinash is holding 5,000 shares of Future Group Limited. Presently the rate of dividend being paid by the company is ₹ 5 per share and the share is being sold at ₹ 50 per share in the market. However, several factors are likely to change during the course of the year as indicated below:

	Existing	Revised
Risk free rate	12.5%	10%
Market risk premium	6%	4.8%
Expected growth rate	5%	8%
Beta value	1.5	1.25

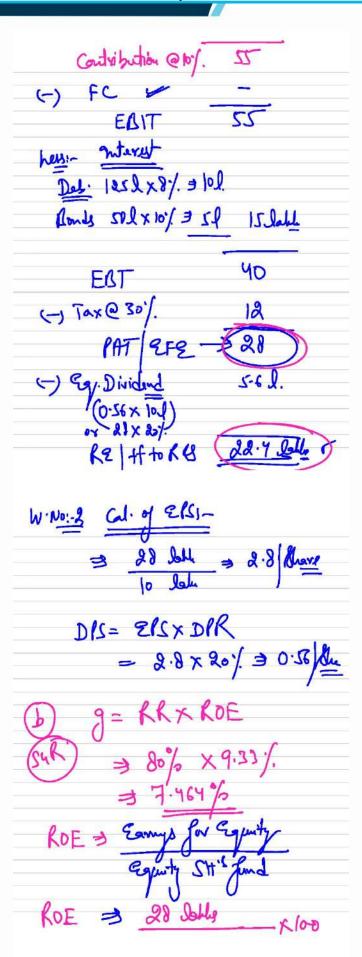
In view of the above factors whether Abinash should buy, hold or sell the shares? Narrate the reason for the decision to be taken.

Educator CA Inter FM/CA Final AFM

CA FINAL AFM SUMMARY

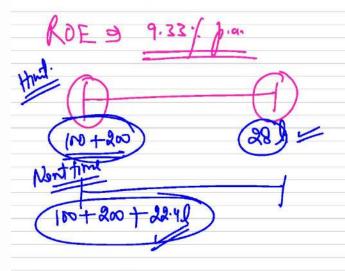
hald or buy more stock from the market, apply other factors remaining the same.

QUESTION NO. 2J


Following Financial Data for Platinum Ltd. are available for the year 2011:

	(₹ In lacs)
Equity Shares (₹ 10 each)	100
8% Debentures	125
10% Bonds	50
Reserve and Surplus	200
Total Assets	500
Assets Turnover Ratio	1.1
Effective Tax Rate	30%
Operating Margin	10%
Required rate of return of investors	15%
Dividend payout ratio	20%
Current market price of shares	₹ 13

You are required to:


- a) Draw income statement for the year
- b) Calculate the sustainable growth rate
- c) Compute the fair price of the company's share using dividend discount model, and
- d) Draw your opinion on investment in the company's share at current price.

CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM

100 + 200 late

The stock is over-valued over-priced.

It is recommended that investor should not invest " in the company of CMP. is. @ ZIS Dune

LOS 8: Determination of Growth rate

The sustainable growth rate is the rate at which equity, earnings and dividends can continue to grow indefinitely assuming that ROE is constant, the dividend payout ratio is constant, and no new equity is sold.

Method 1: Sustainable growth (g) = $(1 - Dividend payout Ratio) \times ROE$

OR

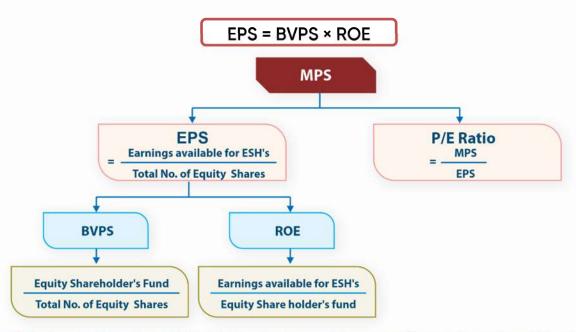
 $g = RR \times ROE$

Method 2: $D_n = D_0 (1 + g)^{n-1}$

= Base year dividend D_0

 D_n = Latest (Current year dividend) n-1 = No. Of times D_0 increases to D_n

LOS 9: Calculation of K_e in case of Floating cost is given


Floating Cost are costs associated with the issue of new equity. E.g. Brokerage, Commission, underwriting expenses etc.

- If issue cost is given in question, we will take P_0 net of issue cost (Net Proceeds).
- If floating Cost is expressed in % i.e. P_0 (1 f) = $\frac{D_1}{K_0 a_0}$
- If floating Cost is expressed in Absolute Amount i.e. $P_0 f = \frac{D_1}{K_0 a_0}$

Note:

- K_e of new equity will always be greater than K_e of existing equity.
- Floatation Cost is only applicable in case of new equity and not on existing equity (or retained earnings).

LOS 10: Return on Equity (ROE) and Book Value Per Share (BVPS)

Note: Calculate P / E Ratio at which Dividend payout will have no effect on the value of the share. When $r = K_e$, dividend payout ratio will not affect value of share.

Security Valuation

Educator CA Inter FM/CA Final AFM

Example:

If r = 10% then K_e = 10% and K_e = $\frac{1}{P/ERatio}$ => $0.10 = \frac{1}{P/ERatio}$ => P/E Ratio = 10 times

QUESTION NO. 4A

The firm was started a year ago with an equity capital of ₹ 20 Lacs

P/E Ratio ₹ 2,00,000 Dividend paid ₹ 1,50,000 12.5 Earning of the firm

Number of the shares outstanding, 20,000 @ ₹ 100 each. The firm is expected its current rate of earning on investment.

- a) Ascertain whether the company's D/P ratio is optimal according to Walter.
- b) What should be the P/E ratio at which the dividend pay-out ratio will have no effect on the value of the
- c) Will your decision change if the P/E ratio is 8, instead of 12.5?

6 3 = 132.81 Sharp At 0% D/K + Ke [8/1-D/1]

10 = D/1 + Ke [8/1-D/1] Educator CA Inter FM/CA Final AFM

They, MPS is maximum at 0%. DPR It can be been that to will increase

by adopting 0% DIR. b) PE Retio = ? Atwhile DPK will not effect the MPS:-

When r=Ke, DIR will not offert The movest price per shave. Hera,

8=10% then the = 10%

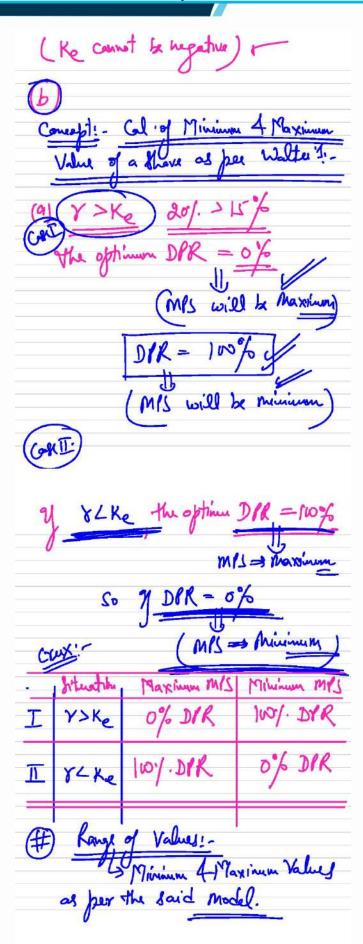
We know that,

Ke = P/Eleto

PERato = 10 times

Hana, if ME late is to time, DIR will not affect the mkt. price of a

@ 8 1/E latro = 8 -times


CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM

QUESTION NO. 4B

A Ltd. has a book value per share of ₹ 137.80. Its return on equity is 15% and it follows a policy of retaining 60% of its earnings. If the opportunity cost of capital is 18%, what is price of share today.

QUESTION NO. 4C

X Ltd has an internal rate of return @ 20%. It has declared dividend @18% on its equity shares, having face value of ₹ 10 each. The payout ratio is 36% and Price Earnings Ratio is 7.25. Find the cost of equity according to Walter's Model and hence determine the limiting value of its shares in case the payout ratio is varied as per the said model.

Educator CA Inter FM/CA Final AFM

At IW/ DPRI - DIS=5/Bharp

LOS 11: Over - Valued & Under - Valued Shares

Cases	Value	Decision
PV Market Price < Actual Market Price	Over – Valued	Sell
PV Market Price > Actual Market Price	Under – Valued	Buy
PV Market Price = Actual Market Price	Correctly Valued	Buy / Sell

LOS 12: Holding Period Return (HPR)

HPR =
$$\frac{(P_1 - P_0) + D_1}{P_0}$$

HPR = $\frac{P_1 - P_0}{P_0}$ + $\frac{D_1}{P_0}$

(Capital gain Yield / Return) (Dividend Yield / Return)

Multi-stage Dividend discount Model [If g >K e]/ Variable Growth Rate Model LOS 13:

- (iv) Growth model is used under the assumption of g = constant.
- (v) When more than one growth rate is given, then we will use this concept.

or If $g > K_e$

(vi) A firm may temporarily experience a growth rate that exceeds the required rate of return on firm's equity but no firm can maintain this relationship indefinitely.

> Value of a dividend- paying firm that is experiencing temporarily high growth = PV of dividends expected during high growth period.

PV of the constant growth value of the firm at the end of the high growth period.

Value =
$$\frac{D_1}{(1+k_e)^1} + \frac{D_2}{(1+k_e)^2} + \dots + \frac{D_n}{(1+k_e)^n} + \frac{P_n}{(1+k_e)^n}$$

When $P_n = \frac{D_n(1+g_c)}{K_e-g_c}$

QUESTION NO. 7C

X Limited, just declared a dividend of ₹14.00 per share. Mr. B is planning to purchase the share of X Limited, anticipating increase in growth rate from 8% to 9%, which will continue for three years He also expects the market price of this share to be ₹ 360.00 after three years

You are required to determine:

- a) The maximum amount Mr. B should pay for shares, if he requires a rate of return of 13% per annum.
- b) The maximum price Mr. B will be willing to pay for share, if he is of the opinion that the 9% growth can be maintained indefinitely and require 13% rate of return per annum.
- c) The price of share at the end of three years, if 9% growth rate is achieved and assuming other conditions remaining same as in (ii) above.

Calculate rupee amount up to two decimal points.

	Year-1	Year-2	Year-3
FVIF @ 9%	1.09	1.188	1.295
FVIF @ 13%	1.13	1.277	1.443
PVIF @ 13%	0.885	0.783	0.693

$$D_{0} = |M| \text{ there } g = 9\% \quad f_{0} = 360 | \text{ there } g = 9\% \quad f_{0} = 360 | \text{ there } g = 9\% \quad f_{0} = 360 | \text{ there } g = 9\% \quad f_{0} = 360 | \text{ there } g = 360 | \text{ the$$

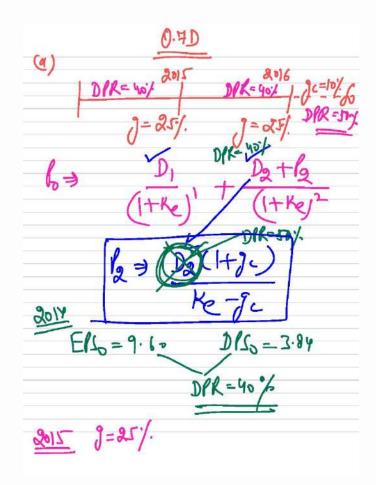
Ysex	CF'S	0.885 0.885	12.51	
<u>1</u> 2	16.63	0.483	13.02	
	Manual II	0.693	19.26	
3	18.13		249.48	
3	360	0.693		
		6= 3	288.57	10km
				_
(b)	ge=91/			8
· la	Do Ke	utg)		
	Ke	-9-		
		4	3 F 381.	50/ Blun
		1309	_	+-
@	1		1-1-	2/=-
	S ₁		P3=9	E=13/
la	→ D2	utju)		
د:	-	-9-		
	3 18.	13 C1+ ·09)	
	-	1309	(<u>-</u> = <u>-</u> <u>/</u> M	
	习足	494.04	Mare	

QUESTION NO. 7D

X Ltd. is a Shoes manufacturing company. It is all equity financed and has a paid-up Capital ₹10,00,000 (₹10 per share)

X Ltd. has hired Swastika consultants to analyze the future earnings. The report of Swastika consultants states as follows:

- The earnings and dividend will grow at 25% for the next two years.
- 2. Earnings are likely to grow at the rate of 10% from 3rd year and onwards.
- 3. Further, if there is reduction in earnings growth, dividend payout ratio will increase to 50%.

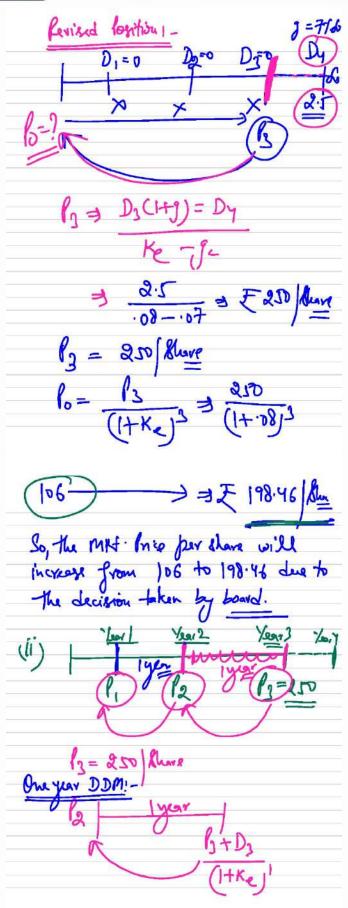

The other data related to the company are as follows:

Year	EPS(₹)	Net Dividend per share(₹)	Share Price (₹)
2010	6.30	2.52	63.00
2011	7.00	2.80	46.00
2012	7.70	3.08	63.75
2013	8.40	3.36	68.75
2014	9.60	3.84	93.00

You may assume that the tax rate is 30% (not expected to change in future) and post-tax cost of capital is 15%.

By using the Dividend Valuation Model, calculate

- a) **Expected Market Price per share**
- P/E Ratio. b)


EPS, => 9.60 (1+25) DPS, => 12 K40%
13 80 8h
Elis = 18(1+.82) Dis = 12×40/
= 15/AL = 6/AL.
DIR= 40%
D 020 - D20 C 140 1
le = De (DR=50)CHIL
Ke-gc
Do = [12 x 20/2] (1+.10)
₹ 8.25
OX
() Do = [9.60 Cl+ .52] x x 20),] Cl+ 10)
→ 8.25
12 = 8.25 = = F165/Brane
D ₁ D ₂ + l ₂ (1+Ke) ²
1+15) + 6+165 (1+15)2
lo = モ4.80×0.870 + (6+165) 火ルド色は1,2mp.

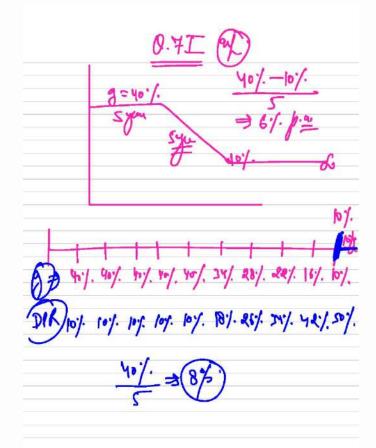
QUESTION NO.7F

SAM Ltd. has just paid a dividend of ₹ 2 per share and it is expected to grow @ 6% p.a. After paying dividend, the Board declared to take up a project by retaining the next three annual dividends. It is expected that this project is of same risk as the existing projects.

The results of this project will start coming from the 4th year onward from now. The dividends will then be ₹ 2.50 per share and will grow @ 7% p.a.

An investor has 1,000 shares in SAM Ltd. and wants a receipt of at least ₹ 2,000 p.a. from this investment. Show that the market value of the share is affected by the decision of the Board. Also show as to how the investor can maintain his target receipt from the investment for first 3 years and improved income thereafter, given that the cost of capital of the firm is 8%.

CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM


CA FINAL AFM SUMMARY

QUESTION NO. 71

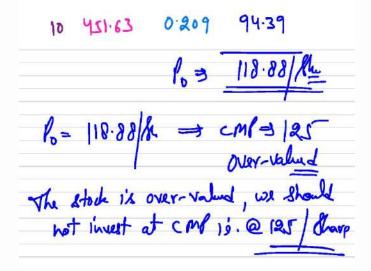
The current EPS of M/s VEE Ltd. is ₹ 4. The company has shown an extraordinary growth of 40% in its earnings in the last few year This high growth rate is likely to continue for the next 5 years after which growth rate in earnings will decline from 40% to 10% during the next 5 years and remain stable at 10% thereafter. The decline in the growth rate during the five year transition period will be equal and linear. Currently, the company's pay-out ratio is 10%. It is likely to remain the same for the next five years and from the beginning of the sixth year till the end of the 10th year, the pay-out will linearly increase and stabilize at 50% at the end of the 10th year. The post tax cost of capital is 17% and the PV factors are given below:

Years	1	2	3	4	5	6	7	8	9	10
PVIF 17%	0.855	0.731	0.625	0.534	0.456	0.390	0.333	0.285	0.244	0.209

You are required to calculate the intrinsic value of the company's stock based on expected dividend. If the current market price of the stock is ₹ 125, suggest if it is advisable for the investor to invest in the company's stock or not.

M.No.	L Col	213 %.	+ DPS	285=4	Mr.		
Xear	(9)	20	DIR	DRS	_		
ī	40/	5-60	10./	92.0	D,		
2	401/-	7.89	h /-	0.78	Da		
3	40%	10 98	10:/-	1.10	2		
y	40%	15.37	10%	1.54	Dy		
5	40%.		o'/.	2.15	D5		
G	34%	28.84	18%	5-19	De		
7	28/	36.12	26 %	9.60	D7		
8	22%	42.04	341/.	15.31	Do		
1	16%.	52.25	42%	21.95	D9		
10		84.48	50%	28.74	Dho		
(10 ≥ D10 C1+g) Ke-Jc							
	→ 28·74(1+·10) -17 - ·10						
	3	£ 45	• 1900	hive			
Cal.	of lo=		- 1				
Year	CF'S	- (VFC	217%	PV			
13041	0.26	0.8		0.48			
2	0.48	0.4		42.0			
3	01.0		25	0.69			
ÿ	1.54	2.0		0.82			
j	2.15		26	0.98			
6	5-19		90	2.02			
7	9.60		223	3.20			
8	15.31	0.5	285	4.36			

21.95


28.74

5.36

6-01

0.244

0.209

LOS 14: IRR Technique & Growth Model

IRR is the discount rate that makes the present values of a project's estimated cash inflows equal to the Present value of the project's estimated cash outflows.

- At IRR Discount Rate => PV (inflows) = PV (outflows)
- 4 The IRR is also the discount rate for which NPV of a project is equal to Zero.
- IRR technique is used when, K e is missing in the Question.
- IRR = Lower Rate + $\frac{\text{Lower Rate}_{\text{NPV}}}{\text{Lower Rate}_{\text{NPV}} \text{Higher Rate}_{\text{NPV}}} \times \text{Difference in Rate}$

LOS 15: Price at the end of each year

$$\begin{split} P_0 = & \frac{P_1 + D_1}{(1 + K_e)^1} \\ P_1 = & \frac{P_2 + D_2}{(1 + K_e)^1} \\ P_2 = & \frac{P_3 + D_3}{(1 + K_e)^1} \\ P_3 = & \frac{P_4 + D_4}{(1 + K_e)^1} \\ & \ddots \\ So on \end{split}$$

Los 16: Negative Growth

If Positive Growth, then Po $D_0(1-g)$ If Negative Growth, then P_0

Note: We Know $g = RR \times ROE$

Case I	EPS > DPS	Retention is Positive	g = Positive
Case II	EPS < DPS	Retention is Negative	g = Negative
Case III	EPS = DPS	No Retention	g = 0

LOS 17: Preference Dividend Coverage Ratio & Equity Dividend Coverage Ratio

Interest Coverage Ratio

Preference Dividend Coverage Ratio

Equity Dividend Coverage Ratio

Earning Before Interest and Tax

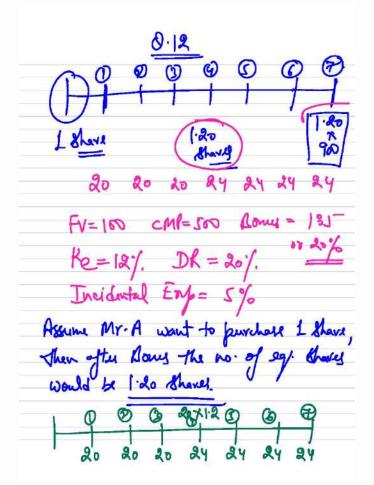
Interest

Profit After Tax

Preference Dividend

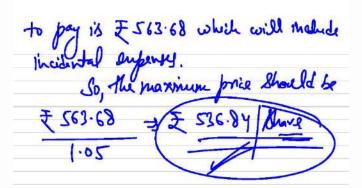
Profit After Tax - Preference Dividend

Dividend payable to equity share holders

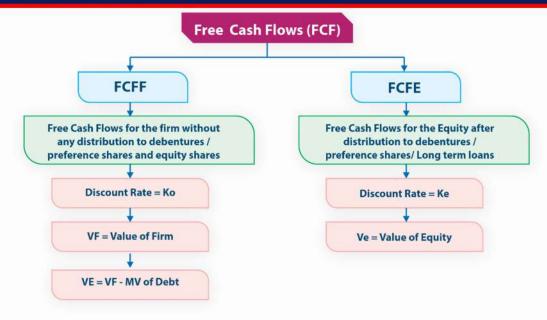

Note:

The Higher the Better. These Ratios indicates the surplus profit left after meeting all the fixed obligation.

LOS 18: Calculation of Maximum price of a share


QUESTION NO. 12

Mr. A is thinking of buying shares at ₹ 500 each having face value of ₹ 100. He is expecting a bonus at the ratio of 1:5 during the fourth year. Annual expected dividend is 20% and the same rate is expected to be maintained on the expanded capital base. He intends to sell the shares at the end of seventh year at an expected price of ₹ 900 each. Incidental expenses for purchase and sale of shares are estimated to be 5% of the market price. He expects a minimum return of 12% per annum. Should Mr. A buy the share? If so, what maximum price should he pay for each share? Assume no tax on dividend income and capital gain.



CFA L1 & L2 NISM- RA/IA Educator CA Inter FM/CA Final AFM

			708-1 X01P) 22PX				
(\	(I+11y)	(+1)(+1)	+13 (1+12) (1+12)				
Year	CF'S	PUF@12%	<u>lv</u>				
T	20	0.893	17-86				
2	20	0.797	15.94				
3	20	0·H2	14.24				
4	24	0-636	15.26				
5	24	432.0	13.61				
6	24	702.0	12.17				
7	Q Y	224.0	10.82				
7 (x 15/. 0.452	463.75				
	≥ 105€						
		Po >	263.68				
lo=	£ 283-8	•)	W= 500 + 505 => ₹ 525 - valued				
	e Kon		by				
Mr. A	Should	buy the sh	me at cup				
12 2	1.5+0	12. SES &	hose juckding				
ineide	tal eu	pensy bloa	uk stock is				
dende	under-valued.						
b	201-	+.05) =	£ 263.68				
	N & F 526.84 Shorp						
Maxim	um pric	e Mr.A sh	ould be ready				

LOS 19: Cash Flow Base Models

Calculation of FCFF

EBITDA	XXX
Less : Depreciation & Amortisation (NCC)	xxx
EBIT	xxx
Less: Tax	xxx
NOPAT	xxx
Add : Depreciation (NCC)	xxx
Less : Increase in Working Capital (WCInv)	xxx
Less : Capital Expenditure (FCInv)	xxx
Free Cash Flow For Firm (FCFF)	XXX

- a) Based on its Net Income:
 - FCFF= Net Income + Interest expense *(1-tax) + Depreciation -/+ Capital Expenditure -/+ Change in Non-Cash Working Capital
- b) Based on Operating Income or Earnings Before Interest and Tax (EBIT): FCFF= EBIT *(1 - tax rate) + Depreciation -/+ Capital Expenditure -/+ Change in Non-Cash Working Capital
- c) Based on Earnings before Interest, Tax , Depreciation and Amortisation (EBITDA):

2.41

Educator CA Inter FM/CA Final AFM

FCFF = EBITDA* (1-Tax) +Depreciation* (Tax Rate) -/+ Capital Expenditure - /+Change in Non-Cash **Working Capital**

d) Based on Free Cash Flow to Equity (FCFE):

FCFF = FCFE + Interest* (1-t) + Principal Prepaid - New Debt Issued + Preferred Dividend

e) Based on Cash Flows:

FCFF = Cash Flow from Operations (CFO) + Interest (1-t) -/+ Capital Expenditure

Calculation of FCFE

Method 1: If Debt financing ratio is given:

EBITDA	VVV
LUITOA	XXX
Less : Depreciation & Amortisation	XXX
EBIT	XXX
Less: Interest	XXX
EBT	XXX
Less: Tax	XXX
PAT	XXX
Add : Depreciation × % Equity Invested	XXX
Less: Increase in Working Capital × % Equity Invested	XXX
Less: Capital Expenditure × % Equity Invested	XXX
Free Cash Flow for Equity (FCFE)	XXX

Method 2: If Debt financing ratio is not given:

EBITDA	xxx
Less : Depreciation & Amortisation	xxx
EBIT	xxx
Less: Interest	xxx
EBT	xxx
Less: Tax	xxx
PAT	xxx
Add : Depreciation (NCC)	xxx
Less: Increase in Working Capital (WCInv)	xxx
Less: Capital Expenditure (FCInv)	xxx
Add : Net Borrowings	xxx
Free Cash Flow for Equity (FCFE)	xxx

Calculating FCFE from FCFF

FCFE = FCFF - [Interest (1- tax rate)] + Net borrowing

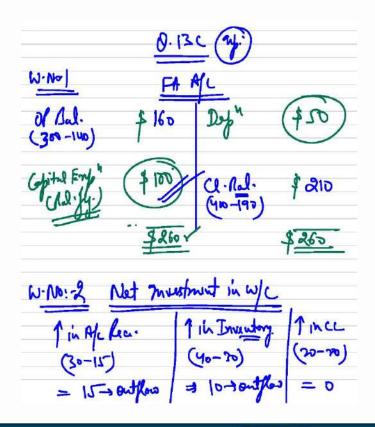
b) Calculating FCFE from net income

FCFE = NI + NCC - FCInv - WCInv + net borrowing

c) Calculating FCFE from CFO

FCFE = CFO - FCInv + net borrowing

QUESTION NO. 13C: Calculating FCFF and FCFE


Anson Ford, CFA, is analysing the financial statements of Sting's Delicatessen. He has a 2009 income statement and balance sheet, as well as 2010 income statement & balance sheet (as shown in the tables below). Assume there will be no sales of long-term assets in 2010. Calculate forecasted free cash flow to the firm (FCFF) and free cash flow to equity (FCFE) for 2010.

Sting's Income Statement

Income Statement	2010 Forecast	2009 Actual
Sales	\$300	\$250
Cost of goods sold	120	100
Gross profit	180	150
SG&A	35	30
Depreciation	50	40
EBIT	95	80
Interest expense	15	10
Pre-tax earnings	80	70
Taxes (at 30%)	24	21
Net income	56	49

Sting's Balance Sheet

Balance Sheet	2010 Forecast	2009 Actual
Cash	\$10	\$5
Account Receivable	30	15
Inventory	40	30
Current Assets	\$80	\$50
Gross property, plant and equipment	400	300
Accumulated depreciation	190	140
Total Assets	\$290	\$210
Account Payable	\$20	\$20
Short Term Debt	20	10
Current Liabilities	\$40	\$30
Long Term Debt	114	100
Common Stock	50	50
Retained earnings	86	30
Total liabilities and owners' equity	\$290	\$210

Educator CA Inter FM/CA Final AFM

1 mc4 = 25 1 mc = 0 M.100:-1 209

\$ 145 EDITDA 25-021-005 300 J 88.20 (-) Tax@30/. NOPAT \$ 66.50 160.00 FOFF 6) \$ 8.50

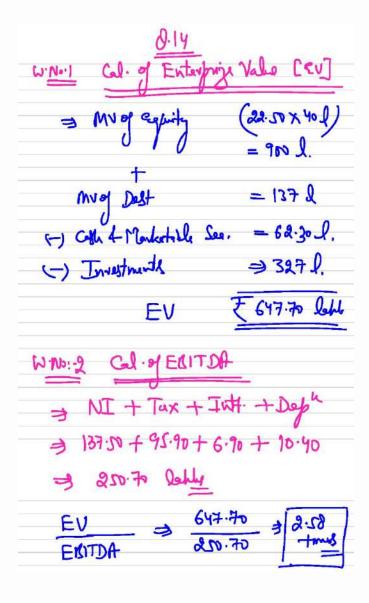
Cal. of FEFE! -	
RAITDA	\$ 145
(-) Dag"	02.4
EĞIT	\$ 95
→ ndt·	412
ENT	\$ 80
(-) Tax @ 30%.	\$29
PAT	\$ 56
(+) Deph	200
(-) Cap Emp	\$100
(-) 1 muje	125
(+) Not Borrowings	484
	356
FUFE	
lyzle: - (MCO)	
	. k 1
O CFO > NI +	Deg - Imajc
+ 322 6	127 - 925
≥ \$81 €	
(2) Cal. of FCFF grow	u Cto!-
FUFF = UFO+	nut (1-lan)
(-) 9mv	

FUFF = CFO + "WHILL-HAM)
(-) mut in FA
3 \$81 + 15(1-30) -100
FUFF > 1 8.50
3 Cd. FLFE from CFO: -

Educator CA Inter FM/CA Final AFM

LOS 20: Valuation Based on Multiples

- P/E Multiple Approach MPS = EPS \times P/E Ratio
- Enterprise Value to Sales = $\frac{EV}{Sales}$
- **Enterprise Value to EBITDA**
- EV market value of common stock + market value of preferred equity + market value of debt + minority interest – cash & cash equivalents and Equity investments, investment in any co. & also Long term investments.
- EBIT + depreciation + amortization **EBITDA**


QUESTION NO. 14

An analyst gathered the following data for Boulevard Industries

Recent share price	₹ 22.50
Shares outstanding	40 Lakhs
Market value of debt	₹ 137 Lakhs
Cash and marketable securities	₹ 62.30 Lakhs
Investments	₹ 327 Lakhs
Net income	₹ 137.50 Lakhs

Interest expense	₹ 6.90 Lakhs
Depreciation and amortization	₹ 10.40 Lakhs
Taxes	₹ 95.90 Lakhs

Based on this information, calculate the EV/EBITDA ratio for Boulevard Industries.

